C: Casino

JAG 春コンテスト 2015

原案:岩田・保坂

解答:澤·保坂

解説:保坂

問題概要

- 確率 p で賭金が 2 倍になるっただし賭金は正整数ドル
- 手持ち m ドルから始めて, n ドル以上に できる確率は?
- さらに最善の初手もすべて求めよ

- p は整数パーセント (この解説では 100 で割っておきます)
- $0 < m < n \le 10^9$

自明な場合

- p=0 のとき
 - □ 何をしても負けるに決まっている, 確率 0.0
 - 最善初手は1以上 m 以下すべて

- p = 1 のとき
 - □ 何をしても勝てるに決まっている, 確率 1.0
 - 最善初手は1以上 m 以下すべて

とりあえず定式化

• p, n を固定して,所持金 m から勝てる確率を z_m とおいて式を立てる:

$$z_0 = 0$$
, $z_n = 1$,
$$z_m = \max_{1 \le d \le \min\{m, n-m\}} p z_{m+d} + (1-p) z_{m-d}$$

- 』 適当な初期値から収束するまでループを回せばn が小さいときは解ける
 - 解の様子が知りたかったら実験しましょう
- 解の一意性の証明は省略します
 - 複数解存在するとして、差をとるとわかる

有名な場合

- p = 1/2 のとき
 - □無駄をしなければ、つまり n − (所持金) より 多く賭けたりしなければ、勝てる確率は m/n
 - 証明の例:
 - 。公平な賭けなので (martingale) 終了時の所持金の期待値も m 円
 - $z_m = m/n$ がさっきの不等式を満たすことを確認する
 - □ 最善初手は 1 以上 min(*m*, *n* − *m*) 以下すべて
 - p = 0,1 のときちょっと違うので注意

- p > 1/2 のとき
 - ■直感:期待値的には良いわけだから長時間 やってれば勝てるっしょ!

- p > 1/2 のとき
 - 事実:1ドルずつ賭ける,が唯一の最適戦略
 - 』証明: 1 ドルずつ賭けるとして勝率を求め、 さっきの z_m の不等式を満たすことを示す

- p > 1/2 のとき
 - $z_m = p z_{m+1} + (1-p) z_{m-1}$
 - よくある3項間漸化式
 - r = (1-p)/p とすると, $z_m = A + B r^m$ とおけて, $z_0 = 0$, $z_n = 1$ から解ける

- p > 1/2 のとき
 - $z_m = (1 r^m)/(1 r^n)$
 - $p \ z_{m+d} + (1-p) \ z_{m-d} = (1+r-r^{m-d+1}-r^{m+d})/(1+r)/(1-r^n)$ は $d \ge 2$ のときは $z_m = (1+r-r^m-r^{m+1})/(1+r)/(1-r^n)$ より小さいので OK

- p > 1/2 のとき (まとめ)
 - a 確率は $(1-r^m)/(1-r^n)$
 - □ 初手は1のみ

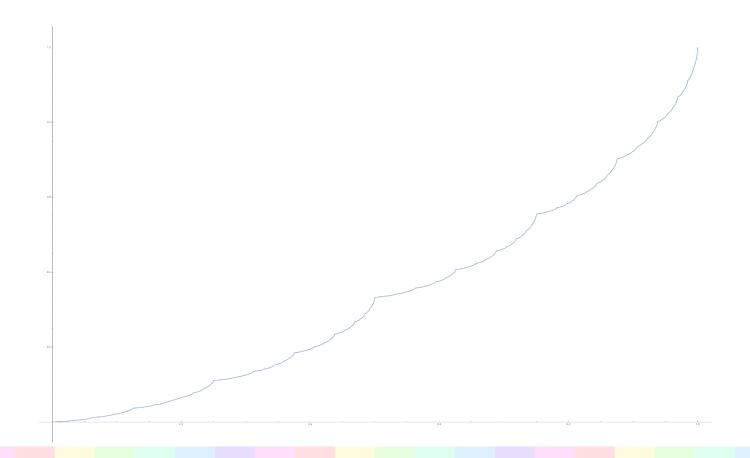
- p < 1/2 のとき
 - ■直感:期待値的に不利だから長引くとジリ貧, わんちゃん狙っていくしかない!

- p < 1/2 のとき
 - **事実:常に min{(所持金),** *n* − (所持金)} 賭けるのが最適**, ただし他にも最適戦略がある**
 - ・サンプルにもある
 - 。とりあえずその戦略仮定して確率を求めてみ る

- p < 1/2 のとき
 - $z_m = p z_{2m} + (1-p) z_0 \ (m \le n-m)$
 - $z_m = p z_n + (1-p) z_{2m-n} \ (m \ge n-m)$
 - よく考えると, 1 ドル単位とかが関係なくなり, z_m の値は m/n の値だけに依存している, ということで f(m/n) とおき直す

- p < 1/2 のとき
 - □ f の値を求まるところから求めてみよう
 - f(0) = 0, f(1) = 1
 - f(1/2) = p
 - $f(1/4) = p^2$, $f(3/4) = 2p p^2$
 - $f(1/8) = p^3$, $f(3/8) = 2p^2 p^3$, $f(5/8) = p + p^2 p^3$, $f(7/8) = 3p 3p^2 + p^3$
 - ■分母が二冪のところは求まる,二進展開に関係していそう

• p = 1/3 のときの f の様子



- p < 1/2 のとき
 - □ がんばると次が予想できる:
 - x を二進展開して $x = \sum_{i \geq 0} 2^{e_i}$ のとき, $f(x) = \sum_{i \geq 0} r^i (r+1)^{e_i}$ (ただし r = (1-p)/p)
 - 上のように f を定義したとき,有理数 $x \ge \delta \ge 0$ に対して $f(x) \ge p f(x + \delta) + (1 p) f(x \delta)$ を示して,等号成立条件も知りたい

 $f(x+y) \ge f(x) + r f(y) (x \ge y \ge 0)$ の証明

x, y が二進有限小数の場合は末尾が 111 ... ではないほうの二進表記に固定しておく. x の二進展開の最上位を 2^{e_0} として $x=2^{e_0}+x'$ と表しておく $(f(x)=(r+1)^{e_0}+r\,f(x')$ である). y の値によって場合分け.

(1) y の最上位も 2^{e_0} のとき

$$y = 2^{e_0} + y'$$
 と表すと、 $f(x+y) - f(x) - r f(y) = r (f(x'+y') - f(x') - r f(y'))$

(2) y の最上位が 2^{e_0} より小さく, x + y が 2^{e_0+1} の位に繰り上がるとき

$$f(x+y) - f(x) - r f(y) = (r-1) ((r+1)^{e_0} - f(x')) + (f(x'+y) - f(x') - r f(y))$$

$$f(x+y) - f(x) - r f(y) = (r-1) ((r+1)^{e_0} - f(y)) + (f(x'+y) - f(y) - r f(x'))$$

(3) y の最上位が 2^{e_0} より小さく, x + y が 2^{e_0+1} の位に繰り上がらないとき 以下の両方が成り立つ:

$$f(x+y) - f(x) - r f(y) = r(r-1) f(y) + r(f(x'+y) - f(x') - r f(y))$$

$$f(x+y) - f(x) - r f(y) = r(r-1) f(x') + r (f(x'+y) - f(y) - r f(x'))$$

出てきた式について, $(r+1)^{e_0}-f(x')>0$, $(r+1)^{e_0}-f(y)>0$, $f(y)\geq0$, $f(x')\geq0$ に注意. 2 本の式がある場合は x' と y の大小に従って選ぶことで, x, y から 2^{e_0} の位を取り除いた場合に帰着した式が得られる. これを繰り返すと, いつかは x, y の二進表記の循環節に入り, さらに循環節の長さの最小公倍数 (L とする) 回繰り返すと, ある $0\leq l\leq L$ に対して

 $f(x_1+y_1)-f(x_1)-r\,f(y_1)\geq r^l(f(x_1/2^L+y_1/2^L)-f(x_1/2^L)-r\,f(y_1/2^L))$ が得られ, r>1 を用いると $f(x_1+y_1)-f(x_1)-r\,f(y_1)\geq 0$ を得て, $f(x+y)-f(x)-r\,f(y)\geq 0$ が従う.

等号成立条件は,途中で生じる $(r+1)^{e_0} - f(x')$, $(r+1)^{e_0} - f(y)$,f(y),f(x') がすべて 0 であること.言い換えれば, 「x と y で違う桁があったら,そこから下の桁は一方は全部 0」ということになる.

- p < 1/2 のとき
 - $z_m = f(m/n)$ が条件を満たすことはここまでの議論からわかる
 - 事号成立条件は, x, y を (m+d)/n, (m-d)/n に置き換えて考えて, $\lceil m/n \right$ の二進展開に現れる "01" それぞれに対応して, $m=2^{e+2}a+2^e+b$ (a は整数, $0 \le b < 2^e$) と表したとき, $d=(2^e\pm b)n$ が候補」となる

- p < 1/2 のとき (実装)
 - a 確率は m/n の二進展開から求めるが,途中で打ち切ればよい
 - 最悪ケースは p = 0.01 だが,小数第 e 位以降を打ち切ってもロスは高々 100×0.99^e ,よって 10000 桁もやれば十分
 - □ 等号成立条件は,二進展開の下の方になると $d = (2^e \pm b) n$ が 1 ドル単位を下回るので, やはり途中で打ち切ればよい

ジャッジ解情報

· 澤:85 行 2434 B (C++)

• 保坂: 144 行 3174 B (C++)

結果

Accepted / Trying Teams / Submission
1 / 3 / 17

First Acceptance

□ すぬけ ブースター feat. GUMI (294:17)