## JAG Winter Camp '08 Day 2 Problem E Subdividing a Land

ACM-ICPC Japanese Alumni Group

## About the Problem

■ Original problem by T. Yoshino
■ Sample Solution by T. Yoshino, Y. Hirano

- Problem Statement by T. Yoshino

■ Presentation by T. Yoshino

## Contest Result

- 14 submits during the contest
- Only 1 team was accepted
$\square$ At 234 min . (__)
- This is the corrected result, as we had a '\%lld' problem


## Overview of the Problem

■ From a $a$-meter square, take $n b$-meter squares
$\square a, b, n$ are integers

- But the total ratio must not exceed $50 \%$
$\square$ The residential area less than $50 \%$ becomes dead space
- Minimize the dead space!
$\square$ Not by percentage, but area
- If we calculate dead space by percentage, it can be as smaller as we want simply by increasing the denominator
- This leads to divergence to infinity !!


## Overview of the Problem

## $a$ meter(s)



- Total area of
must not exceed 50\%
$\square$ More than or equal to $50 \%$ of must be retained
$a$ ■ Minimize dead space
$\square$ Dead space = exceeding 50\%
$\square=\left(a^{2}-n b^{2}\right)-1 / 2 \cdot a^{2}$


## Solution

- From the percentage constraint,

$$
a^{2}-2 n b^{2} \geq 0
$$

$\square$ And want to minimize: $1 / 2 \cdot a^{2}-n b^{2}=\frac{1}{2}\left(a^{2}-2 n b^{2}\right)$
Actually there are two cases to consider:

1. $a^{2}-2 n b^{2}=0$
2. $a^{2}-2 n b^{2}=1$
$\square$ These two equations cover all cases, so no more cases to be concerned

## This is Not a Packing Problem

- Thanks to the $50 \%$ limit, we can always take $n$ squares
$\square$ From the constraint, $a / b \geq \sqrt{2 n}$
$\square$ Apparently, $a$-meter square can contain $\lfloor a / b\rfloor^{2}$ $b$-meter squares
$\square$ Theorem 1. For all positive integer $n,\lfloor\sqrt{2 n}\rfloor^{2} \geq n$.
Proof. This is easy to prove.

Case 1:
$a^{2}-2 n b^{2}=0$

- The equation can be factorized into:

$$
(a+\sqrt{2 n} b)(a-\sqrt{2 n} b)=0
$$

$\square$ This equation has integer solutions only if $2 n$ is a perfect square of a certain integer
$\square$ Let $m$ be this integer, the minimum solution is apparently $(a, b)=(m, 1)$.

Case 2:
$a^{2}-2 n b^{2}=1$

- This is the equation well-known as "Pell's equation":

$$
x^{2}-N y^{2}=1
$$

$\square$ This equation always has (infinitely many) answers whenever $N$ is not a perfect square (Lagrange, ca. 1766)

- So these two cases cover all inputs


## Never Perform a Naïve Search!

- Sometimes solutions of the equation becomes very huge
$\square$ For example, the minimum solution of

$$
x^{2}-61 y^{2}=1
$$

$$
\text { is }(x, y)=(1766319049,226153980)
$$

$\square$ As stated in the problem, the solution of each test case is less than $2^{63}$

- Actually, you have to totally inspect $8.92 \times 10^{18}$ cases for this problem!!


## So How to Solve the Equation?

- Pell's equation can be solved by calculating the convergent of continued fraction of $\sqrt{N}$
$\square$ Intuitively, this is to calculate a fraction $x / y$ that approximates $\sqrt{N}$
$\square$ The solution is the case where the fraction approaches to $\sqrt{N}$ sufficiently


## Continued Fraction

- A real number $\omega$ can be represented by a positive integer sequence $\left[a_{0} ; a_{1}, a_{2}, \ldots\right.$ ] where

$$
\omega=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

$\square$ An irrational number has (only one) infinite continued fraction representation

- A rational number has a finite sequence


## Calculating the Convergent

- The next algorithm illustrates how to calculate the convergent $\left[a_{0} ; a_{1}, \ldots\right]$ (of $\sqrt{N}$ )
$\square$ First, let $\omega_{0}=\sqrt{N}$
$\square$ Let $a_{n}=\left\lfloor\omega_{n}\right\rfloor$, the largest integer less than or equal to $\omega_{n}$
$\square$ Calculate $\omega_{n+1}$ by the next equation:

$$
\omega_{n+1}=\frac{1}{\omega_{n}-a_{n}}
$$

$\square$ Repeat these steps

## From a Continued Fraction To a Rational Number

- Suppose we take the first $(n+1)$ elements of the convergent
$\square$ Let the elements be $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$
$\square$ Then, the sequence expresses a rational number $p_{n+1} / q_{n+1}$ where

$$
\left\{\begin{array}{l}
p_{-1}=0, q_{-1}=1 \\
p_{0}=1, q_{0}=0 \\
p_{n+1}=p_{n-1}+a_{n} p_{n}, q_{n+1}=q_{n-1}+a_{n} q_{n} \quad(n \geq 0)
\end{array}\right.
$$

## Some Theorems About the Solution of Pell's Equation

- There are some theorems regarding the existence of solutions of the equation
$\square$ Theorem 2 (Lagrange). There exists an integer $n>0$ such that

$$
p_{n}{ }^{2}-N q_{n}{ }^{2}=1
$$

$\square$ Theorem 3 (Euler). Among such $n$ 's, the least one gives the minimum nontrivial solution to the Pell's equation.
$\square$ So basically, we have just to calculate the sequences $p_{n}$ and $q_{n}$ until the solution is found

## Normal Floating-Point Number Is Not Appropriate for This Purpose

- Naïve implementation of the former algorithm requires multiprecision number
$\square$ Underflow error becomes a problem in the calculation of $\omega_{n+1}$
- Since $\omega_{n}-a_{n}$ becomes nearly 0
$\square$ This can lead to infinite loop
- One of teams tried this and got a Runtime Error
$\square$ Simply avoid that!


## Solution Techniques

- Actually, the following fact is known:

Theorem 4 (Euler, 1765). There exists integers $g_{n}$ and $h_{n}$ such that

$$
\omega_{n}=\frac{g_{n}+\sqrt{N}}{h_{n}}
$$

- By substituting this to the equation for $\omega_{n+1}$, we get:

$$
\left\{\begin{array}{l}
g_{0}=0, h_{0}=1 \\
g_{n+1}=-g_{n}+a_{n} h_{n}, h_{n+1}=\frac{N-g_{n+1}^{2}}{h_{n}} \quad(n>0)
\end{array}\right.
$$

$\square$ And from Theorem 4, $a_{n}=\left\lfloor\frac{a_{0}+g_{n}}{h_{n}}\right\rfloor$

## How Much Precision We Need to Calculate?

■Theorem 5. $\forall n \geq 0 . g_{n} \leq a_{0}=\lfloor\sqrt{N}\rfloor$
Proof. It is obvious from the fact $a_{n} h_{n}=\left\lfloor\frac{a_{0}+g_{n}}{h_{n}}\right\rfloor h_{n} \leq a_{0}+g_{n}$.
■ Theorem 6. $\forall n \geq 0.0<h_{n} \leq N$
Proof. By induction. Obvious about the basis $n=0$.
Since $g_{n}<\sqrt{N}, h_{n+1}>0$. And $h_{n+1} \leq N$ since $g_{n+1}{ }^{2} \geq 0$.
■Theorem 7. $\forall n \geq 0.0<a_{n} \leq 2 a_{0}$
Proof. By induction. Basis is obvious.
From the definition, $b_{n}-a_{n}<1$. Then $a_{n+1} \geq 1>0$ follows.
And by using Theorem 5 and $6, a_{n+1} \leq a_{0}+a_{0}=2 a_{0}$.

## How Much Precision We Need to Calculate? (Cont'd)

- So $g_{n}, h_{n}, a_{n}$ fit into int's
$\square$ No need to care for overflows
- $p_{n}, q_{n}$ are obviously growing as $n$ increases, so use long long for them
$\square$ From the problem statement, it is guaranteed that the answer never exceeds $2^{63}$


## Speed Up Technique

■ Actually, $h_{n}=\left|p_{n}{ }^{2}-N q_{n}{ }^{2}\right|$ holds
$\square$ So no need to calculate RHS of the equation every time

- Or, this relation can be used to bound the range of RHS value of the equation
$\square$ Just break a loop once $h_{n}$ becomes 1
- But be aware that $h_{n}$ contains an absolute value
- Post-processing needed when RHS=-1
$\square\left(p^{\prime}, q^{\prime}\right)$ is the minimum answer for RHS $=+1$, where $p^{\prime}={p_{n}}^{2}+N q_{n}{ }^{2}, q^{\prime}=2 p_{n} q_{n}$


## Some Interesting Properties of Pell's Equation

- Consider a quadratic field

$$
\mathbb{Q}(\sqrt{N})=\{x+y \sqrt{N} \mid x, y \in \mathbb{Q}\}
$$

$\square$ LHS of Pell's Equation is a norm on the field

$$
\|\alpha\|=\alpha \cdot \bar{\alpha}=(x+y \sqrt{N})(x-y \sqrt{N})=x^{2}-N y^{2}
$$

$\square$ Let $\alpha_{1}$ be the minimum solution, then for all integer $k \geqq 0, \alpha_{1}{ }^{k}$ is also a solution

- Actually, all solution of the Pell's equation can be represented as above


## About Judge Data

■ As you will expect, we have prepared the data which does exhaustive search
$\square$ Total 6,921 cases
$\square$ Maximum value of solution is at $n=6621$
■ $(a, b)=(8987289718054858751,78100164792027200)$
■ These are less than $2^{63}=9223372036854775808$

## Judges' Solution

- By T. Yoshino
$\square 54$ lines in C++ (removed comments / unused code)
- The core loop can be written in $\sim 10$ lines.
$\square$ Solves the judge data in $<1 \mathrm{sec}$
- By Y. Hirano
$\square 132$ lines in C++
$\square$ Naïve calculation of a convergent on a field $\mathbb{Q}(\sqrt{N})$
$\square$ Solves the judge data in about 3 sec .
■ Both will do


## References

- Pell's Equation in Wikipedia
$\square$ History and Solution Techniques
$\square$ Also see Continued Fraction
- Pell Equation in Wolfram MathWorld


## Any Questions?

