ICPC模擬国内予選2017

F: マトリョーシカ

原案: darsein

問題文: torus

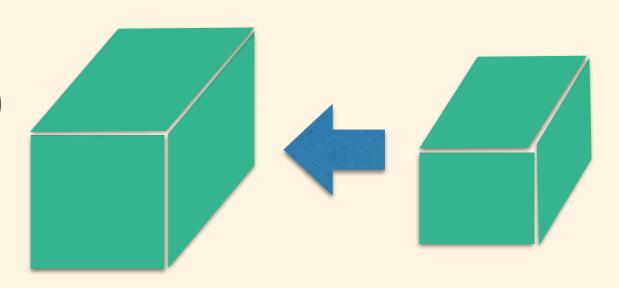
解答: darsein, not, tokoharu, torus

解説: darsein

問題概要

- N体のマトリョーシカがあり、それぞれ $x_i \times y_i \times z_i$ の直方体である
- マトリョーシカは、他のマトリョーシカの中に収納できる
 - 1体の中に直接収納できるのは1体のみ
 - 各辺がそれぞれ平行 (x, y, z は回転して変えてもよい)
 - 収納される方が各辺の長さが真に短い
- 最終的に収納されないマトリョーシカの体積和を最小化せよ

• 制約: 1≤N≤100, 1≤x_i, y_i, z_i≤100

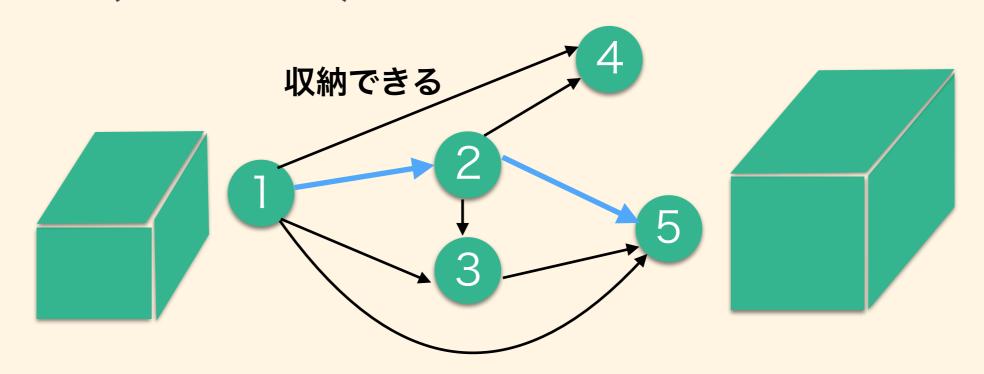


収納できるか否かの判定

- 長方形Aを長方形Bに収納できる ⇔それぞれの3辺を昇順に比較していってどれもAの辺の方が短い
 - →) Aの3辺がa₁≤a₂≤a₃、Bの3辺がb₁≤b₂≤b₃のとき、例 えば収納できる辺の合わせ方が (a₁, a₂, a₃) ⇔ (b₁, b₃, b₂) だとすると、a₂≤a₃<b₂、a₃<b₂≤b₃よりb₂とb₃を入れ替 えてもOK。これをやりまくれば昇順になるのでOK。
 - ←) そう合うように回転すれば入るので自明

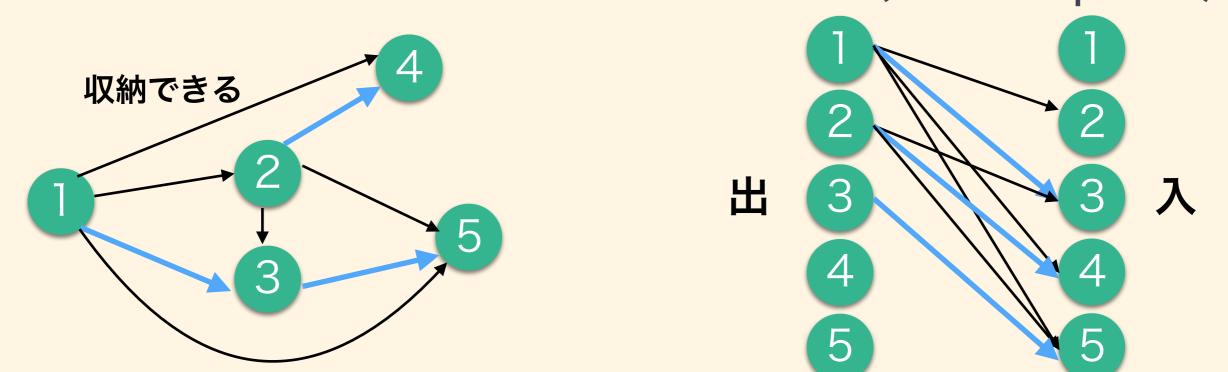
単純な場合: 見える個数を最小化

- 体積は無視で個数を最小化する問題を考える
- マトリョーシカを頂点とし、収納できるか否 かの関係を辺で表すグラフを構築する
- グラフ上の1つのパス ⇔ 1つのマトリョーシカの中に (再帰的に) 収納できる集合



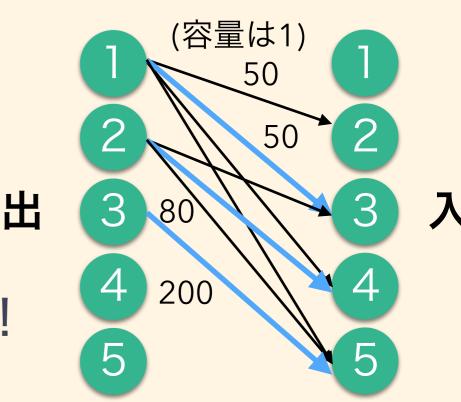
単純な場合: 見える個数を最小化

- 被覆するパスの個数が最小
 - ⇔見えているマトリョーシカの個数が最小
 - → DAGの最小パス被覆問題!
- 最小パス被覆問題は入頂点/出頂点に倍化した二部 グラフ上の最大マッチングで解ける (c.f. 蟻本 p.243)



元の問題: 見える体積を最小化

- ・最小パス被覆において二部グラフの辺を使う⇒ 出頂点を入頂点のマトリョーシカに格納する
- 二部グラフの辺に (体積) 重みが付いたら...???
 - 重みVの辺を使う ⇔ 体積Vが他のマトリョーシカの中に隠れる
- 隠れる体積を最大化する
 - ⇔見える体積を最小化する
 - → 重み最大マッチングで解ける!

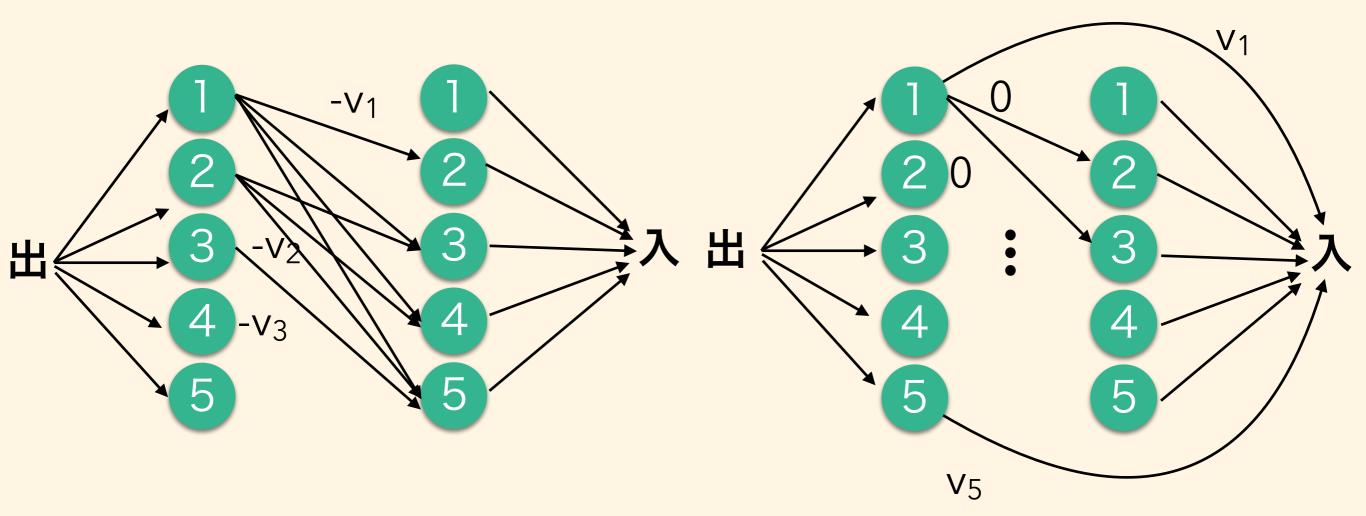


重み最大マッチングの解法

- ハンガリアン法: O(N³)
- 最小費用流: アルゴリズムに依る
 - 頂点数 V = O(N), 辺数 E = O(N²), 最大流 F = O(N)
 - 例えば蟻本 p.203 に載っている O(F E logV)
 の実装なら、O(N³ logN)
 - ただし、最大マッチングをしようとすると最初から負の辺があるので注意

重み最大マッチングの解法

- 最小費用流でも以下のようにグラフを変形する と負の辺がなくなる
 - vi はi番目のマトリョーシカの体積



Writer 解

• darsein: 134 行, 2844 byte (C++)

not: ライブラリが分割されておりめんどい (C++)

• tokoharu: 167 行, 3420 bytes (C++)

• torus: 272 行, 6740 bytes (C++)

統計情報

- AC / trying teams
 - 19 / 34 (55.88%)
- First Acceptance
 - 非現役込み: catsatmat (90:50)
 - 現役のみ: catsatmat (90:50)