Problem G: Revenge of Minimum Cost Flow

原案:荒木,林崎

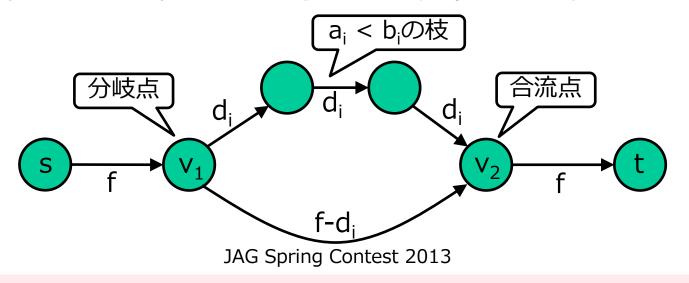
解答:山添,須藤

解説:須藤

問題概要

- n(≦100)頂点の有向グラフが与えられる
- 頂点sから頂点tに流量f(≦200)のフローを流すときの 最小コストを求める
- 各枝は容量が無限
- ◆ 枝iに流量uを流すコストは、
 - ua_i (u ≦ d_i のとき)
 - d_ia_i + (u d_i)b_i (u > d_i のとき)
- a_i < b_i となる枝は高々1個、
 それ以外の全ての枝は a_i > b_i をみたす。

解法(1/3)


- すべての枝が a_i > b_i をみたすとき
 - 1つのパスに全フローを流すのが最適
 - 各枝の通行コストを容量fを流したときのコストとした グラフ上での最短路問題となる
- sからtへのパスを2本取り、それぞれについて u流すときのコストを $c_1(u)$, $c_2(u)$ とする。
 - 条件からc₁もc₂も上に凸な関数
 - $c_1(u)+c_2(f-u)$ も上に凸な関数
 - 区間0≤u≤fで、u=0 か u=f のどちらかで最小値を取る
 - 2本のパスに分かれたフローはコストを悪くせずにまとめられる
 - よって最適解はどれか1本のパスに全フローを流す場合のどれか JAG Spring Contest 2013 3

- - この枝を通るパスはコスト関数が上に凸でない
 - 「1つのパスに全フローを流す」が最適にならない場合が存在
- 最適解の1つを取って来たと考える
 - $a_i > b_i$ をみたす枝のみを通るパスのフローは コストを悪くせずにどこか1本のパスにまとめる事ができる
 - a_i < b_i をみたす枝を通るパスも1本のパスにまとめられる
 - よって $\lceil a_i > b_i$ をみたす枝のみを通るパス」と $\lceil a_i > b_i$ をみたす枝を通るパス」の2本を考えれば良い

解法(3/3)

- 2本のパスへのフローの配分
 - 「a_i < b_i となる枝を通るパス」にd_i流す場合だけ考えれば良い
 - 合計コストは、0≤u≤d_i、d_i≤u≤f の各区間で考えると上に凸
 - よって、「2本のどちらかに全フロー流す」か、 $\lceil a_i < b_i \ \ \, となる枝を通るパスに \ \, d_i 流す」場合のどれかが最適$
- 2本のパスを経由する場合は、以下の形を試せば良い

- 計算量は全体でO(n³)
 - f、f- d_i 、 d_i 流したときのそれぞれについて、 ワーシャルフロイドで全点間最短路を出しておく($O(n^3)$)
 - $a_i < b_i$ となる枝がある場合は、2本のパスの分岐点・合流点を全通り試して、1本のパスに全フロー流す場合と比較($O(n^2)$)
- 制約上、2本のパスに流すフロー配分を全通り試しても ギリギリ間に合う (O(fn³)、C++調べ)
- こんなタイトルですが実は最短路問題でした

ジャッジ解

- 山添 63行(1,762B), C++
- 須藤 84行(2,549B), C++

- Submitチーム数:3
- Acceptチーム数:2
- 総Submit: 15
- First Accept: Komaki (2h52m)