
Problem Set for the 1st Day of Summer Camp

Japanese Alumni Group

Contest Held on: 22 Sep 2006

This problem set contains three problems identified by A through C.

Problem B was newly created by the members of Japanese Alumni Group. You may use this problem in
any form, entirely or in part, with or without modification, for any purposes, without prior or posterior
consent to Japanese Alumni Group, provided that your use is made solely at your own risk.

Problem A was taken from ACM ICPC Northeast North America 2005 and Problem C from ACM ICPC
Africa and Arab 2004. These problems were modified by the members of Japanese Alumni Group for
clarification of the problem statement, adjustment of the difficulty level in solving the problems, attempt
to hide the source of the problems from the contestants during the contest proper, and/or other purposes.
The sources of problems were revealed to the contestants at the review session held after the contest
proper.The permission to use stated above is not applicable to these problems.

THE PROBLEM SET IS PROVIDED “AS-IS”, WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTY. IN NO EVENT SHALL JAPANESE ALUMNI GROUP, THE MEMBERS OF THE GROUP,
OR THE CONTRIBUTORS TO THE GROUP BE LIABLE FOR ANY DAMAGE ARISING IN ANY
WAY OUT OF THE USE OF THE PROBLEM SET, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.



Problem A
Monkey Business

Summer Camp (1st Day), Tokyo
22 Sep 2006Input: A.txt

A technician has been training the monkeys used in the laboratory where she works to open and close
doors. Next to the laboratory, there is a long hallway that contains a number of offices which initially
have closed doors. The offices in the hallway are numbered starting at 1 and ending atN, whereN is the
number of offices in the hallway. Interestingly the number of monkeys in the laboratory is exactly equal
to the number of doors in the hallway.

At night the technician lets the monkeys out of their cages one at a time for exercise. The first monkey
that is let out of the cage runs down the hallway and opens every door (i.e., 1, 2, 3, 4,. . .). The second
monkey runs down the hallway and closes all of the even numbered doors (i.e., 2, 4, 6, 8,. . .). The third
monkey runs down the hallway and examines every third door (i.e., 3, 6, 9, 12,. . .). The monkey will
open any closed door that it examines, and close any open door that it examines. The fourth monkey
examines every fourth door, and so forth. This process continues until all of the monkeys have been let
out of their cages and allowed to run down the hallway. The last monkey will only examine the last door.

It would be nice to know which doors are left open at the end of the night. For example, given a hallway
that contains five doors (and five monkeys), doors 1 and 4 will be open after all the monkeys have been
let out of their cages. The technician has decided to write a grant to fund this work and has asked you for
help. She requires you to write a program that, given as input the number of doors in a hallway, shows
the open doors after all of the monkeys have been let out of cages. As said above, there are as many
monkeys as there are doors, and all of the doors are initially closed.

Input

The input consists from a series of test cases. Each test case consists of a single positive integer which
specifies the number of doors in the hallway. The input is terminated by a single zero. This is not part of
the input.

Output

For each test case, you should output a list of numbers that identify the doors that are open after all
monkeys have been let out of their cages. The numbers in the list should be output one per line in
increasing order.

You should output a blank line between two test cases.

Sample Input

5
0

Output for the Sample Input

1
4

Problem A: Monkey Business Page 1 of 6



Problem A: Monkey Business Page 2 of 6



Problem B
The Closest Circle

Summer Camp (1st Day), Tokyo
22 Sep 2006Input: B.txt

You are givenN non-overlapping circles inxy-plane. The radius of each circle varies, but the radius of
the largest circle is not double longer than that of the smallest.

x

y

Figure 1: The Sample Input

The distance between two circlesC1 andC2 is given by the usual formula√
(x1 − x2)2 + (y1 − y2)2 − r1 − r2

where (xi , yi) is the coordinates of the center of the circleCi , andr i is the radius ofCi , for i = 1,2.

Your task is to write a program that finds the closest pair of circles and print their distance.

Input

The input consists of a series of test cases, followed by a single line only containing a single zero, which
indicates the end of input.

Each test case begins with a line containing an integerN (2 ≤ N ≤ 100000), which indicates the number
of circles in the test case.N lines describing the circles follow. Each of theN lines has three decimal
numbersR, X, andY. R represents the radius of the circle.X andY represent thex- andy-coordinates of
the center of the circle, respectively.

Output

For each test case, print the distance between the closest circles. You may print any number of digits
after the decimal point, but the error must not exceed 0.00001.

Problem B: The Closest Circle Page 3 of 6



Sample Input

4
1.0 0.0 0.0
1.5 0.0 3.0
2.0 4.0 0.0
1.0 3.0 4.0
0

Output for the Sample Input

0.5

Problem B: The Closest Circle Page 4 of 6



Problem C
Sort that Queue

Summer Camp (1st Day), Tokyo
22 Sep 2006Input: C.txt

A queueQ and two stacksA andB are given, and the following operations are defined for them:

QA(n) : dequeue an item fromQ, pushing it onA; repeatn times
QB(n) : dequeue an item fromQ, pushing it onB; repeatn times
QQ(n) : dequeue an item fromQ, enqueue it again inQ; repeatn times
AQ(n) : pop an item fromA, enqueue it inQ; repeatn times
BQ(n) : pop an item fromB, enqueue it inQ; repeatn times
AB(n) : pop an item fromA, push it onB; repeatn times
BA(n) : pop an item fromB, push it onA; repeatn times

Note that each of the above is considered as a single operation, regardless of the value ofn. Here,
dequeuemeans retrieving the front item from a queue, andenqueuemeans adding a new item to the back
of a queue. Bothpushandpopoperations on a stack are done at the top of the stack.

Now, suppose that the queue is already populated with several numbers and that both of the stacks are
empty, we would like to know the minimum number of operations needed to have the same numbers
stored in the queue but sorted in an ascending order. For example, the queue (4 3 1 2 0) where 4 is at the
front, can be sorted in three steps as follows:QA(2), QQ(2), thenAQ(2). The queue (5 4 1 3 2 0) can be
sorted in four operations as follows:QB(2), QQ(1), QB(2), BQ(4).

Your task is to write a program that determines the minimum number of operations needed to sort the
given queue.

Input

The input consists of a number of test cases. Each test case is specified on a single line. Each test case is
made of (N + 1) integers. The first integer specifiesN which is the number of elements in the queue. A
queue ofN elements has the integers from 0 to (N − 1) in some random order. The integers in the queue
are specified from the front to the back. No queue has more than 10 elements.

The end of the test cases is identified with an input line that contains a single integerN = 0, which is not
part of the test cases.

Output

For each test case, write the result on a separate line.

Sample Input

5 4 3 1 2 0
6 5 4 1 3 2 0
0

Output for the Sample Input

3
4

Problem C: Sort that Queue Page 5 of 6



Problem C: Sort that Queue Page 6 of 6


