
Problem Set for the 2nd Day of Summer Camp 2007

Japanese Alumni Group

Contest Held on 23 Sep 2007

Status of Problems

All problems were newly created by the members of Japanese Alumni Group.

Some portion of the problem statement was modified for clarifications.

The second figure and the sample output in Problem E were found to be incorrect. It is corrected in this
PDF file.

This problem set was typeset by LATEX 2ε with a style file made by a member of JAG from scratch, so
that the statement looks like those used in ACM-ICPC Regional Contest held in Japan.

Terms of Use

You may use all problems in any form, entirely or in part, with or without modification, for any purposes,
without prior or posterior consent to Japanese Alumni Group, provided that your use is made solely at
your own risk.

THE PROBLEM SET IS PROVIDED “AS-IS”, WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTY. IN NO EVENT SHALL JAPANESE ALUMNI GROUP, THE MEMBERS OF THE GROUP,
OR THE CONTRIBUTORS TO THE GROUP BE LIABLE FOR ANY DAMAGE ARISING IN ANY
WAY OUT OF THE USE OF THE PROBLEM SET, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem A

Hit and Blow

Input: A.txt

Hit and blow is a popular code-breaking game played by two people, one codemaker and one
codebreaker. The objective of this game is that the codebreaker guesses correctly a secret
number the codemaker makes in his or her mind.

The game is played as follows. The codemaker first chooses a secret number that consists of
four different digits, which may contain a leading zero. Next, the codebreaker makes the first
attempt to guess the secret number. The guessed number needs to be legal (i.e. consist of four
different digits). The codemaker then tells the numbers of hits and blows to the codebreaker.
Hits are the matching digits on their right positions, and blows are those on different positions.
For example, if the secret number is 4321 and the guessed is 2401, there is one hit and two blows
where 1 is a hit and 2 and 4 are blows. After being told, the codebreaker makes the second
attempt, then the codemaker tells the numbers of hits and blows, then the codebreaker makes
the third attempt, and so forth. The game ends when the codebreaker gives the correct number.

Your task in this problem is to write a program that determines, given the situation, whether
the codebreaker can logically guess the secret number within the next two attempts. Your
program will be given the four-digit numbers the codebreaker has guessed, and the responses
the codemaker has made to those numbers, and then should make output according to the
following rules:

• if only one secret number is possible, print the secret number;

• if more than one secret number is possible, but there are one or more critical numbers,
print the smallest one;

• otherwise, print “????” (four question symbols).

Here, critical numbers mean those such that, after being given the number of hits and blows for
them on the next attempt, the codebreaker can determine the secret number uniquely.

Input

The input consists of multiple data sets. Each data set is given in the following format:

N

four-digit-number1 n-hits1 n-blows1

1

. . .

four-digit-numberN n-hitsN n-blowsN

N is the number of attempts that has been made. four-digit-numberi is the four-digit number
guessed on the i-th attempt, and n-hitsi and n-blowsi are the numbers of hits and blows for that
number, respectively. It is guaranteed that there is at least one possible secret number in each
data set.

The end of input is indicated by a line that contains a zero. This line should not be processed.

Output

For each data set, print a four-digit number or “????” on a line, according to the rules stated
above.

Sample Input

2
1234 3 0
1245 3 0
1
1234 0 0
2
0123 0 4
1230 0 4
0

Output for the Sample Input

1235
????
0132

2

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem B

Turn Left

Input: B.txt

Taro got a driver’s license with a great effort in his campus days, but unfortunately there had
been no opportunities for him to drive. He ended up obtaining a gold license.

One day, he and his friends made a plan to go on a trip to Kyoto with you. At the end of their
meeting, they agreed to go around by car, but there was a big problem; none of his friends was
able to drive a car. Thus he had no choice but to become the driver.

The day of our departure has come. He is going to drive but would never turn to the right for
fear of crossing an opposite lane (note that cars keep left in Japan). Furthermore, he cannot
U-turn for the lack of his technique. The car is equipped with a car navigation system, but the
system cannot search for a route without right turns. So he asked to you: “I hate right turns,
so, could you write a program to find the shortest left-turn-only route to the destination, using
the road map taken from this navigation system?”

Input

The input consists of multiple data sets. The first line of the input contains the number of data
sets. Each data set is described in the format below:

m n

name1 x1 y1

. . .

namem xm ym

p1 q1

. . .

pn qn

src dst

m is the number of intersections. n is the number of roads. namei is the name of the i-th
intersection. (xi, yi) are the integer coordinates of the i-th intersection, where the positive x
goes to the east, and the positive y goes to the north. pj and qj are the intersection names
that represent the endpoints of the j-th road. All roads are bidirectional and either vertical or
horizontal. src and dst are the names of the source and destination intersections, respectively.

You may assume all of the followings:

3

• 2 ≤ m ≤ 1000, 0 ≤ xi ≤ 10000, and 0 ≤ yi ≤ 10000;

• each intersection name is a sequence of one or more alphabetical characters at most 25
character long;

• no intersections share the same coordinates;

• no pair of roads have common points other than their endpoints;

• no road has intersections in the middle;

• no pair of intersections has more than one road;

• Taro can start the car in any direction; and

• the source and destination intersections are different.

Note that there may be a case that an intersection is connected to less than three roads in
the input data; the rode map may not include smaller roads which are not appropriate for the
non-local people. In such a case, you still have to consider them as intersections when you go
them through.

Output

For each data set, print how many times at least Taro needs to pass intersections when he drive
the route of the shortest distance without right turns. The source and destination intersections
must be considered as “passed” (thus should be counted) when Taro starts from the source or
arrives at the destination. Also note that there may be more than one shortest route possible.

Print “impossible” if there is no route to the destination without right turns.

Sample Input

2 1
KarasumaKitaoji 0 6150
KarasumaNanajo 0 0
KarasumaNanajo KarasumaKitaoji
KarasumaKitaoji KarasumaNanajo
3 2
KujoOmiya 0 0
KujoAburanokoji 400 0
OmiyaNanajo 0 1150
KujoOmiya KujoAburanokoji
KujoOmiya OmiyaNanajo
KujoAburanokoji OmiyaNanajo
10 12
KarasumaGojo 745 0
HorikawaShijo 0 870
ShijoKarasuma 745 870
ShijoKawaramachi 1645 870

4

HorikawaOike 0 1700
KarasumaOike 745 1700
KawaramachiOike 1645 1700
KawabataOike 1945 1700
KarasumaMarutamachi 745 2445
KawaramachiMarutamachi 1645 2445
KarasumaGojo ShijoKarasuma
HorikawaShijo ShijoKarasuma
ShijoKarasuma ShijoKawaramachi
HorikawaShijo HorikawaOike
ShijoKarasuma KarasumaOike
ShijoKawaramachi KawaramachiOike
HorikawaOike KarasumaOike
KarasumaOike KawaramachiOike
KawaramachiOike KawabataOike
KarasumaOike KarasumaMarutamachi
KawaramachiOike KawaramachiMarutamachi
KarasumaMarutamachi KawaramachiMarutamachi
KarasumaGojo KawabataOike
8 9
NishikojiNanajo 0 0
NishiojiNanajo 750 0
NishikojiGojo 0 800
NishiojiGojo 750 800
HorikawaGojo 2550 800
NishiojiShijo 750 1700
Enmachi 750 3250
HorikawaMarutamachi 2550 3250
NishikojiNanajo NishiojiNanajo
NishikojiNanajo NishikojiGojo
NishiojiNanajo NishiojiGojo
NishikojiGojo NishiojiGojo
NishiojiGojo HorikawaGojo
NishiojiGojo NishiojiShijo
HorikawaGojo HorikawaMarutamachi
NishiojiShijo Enmachi
Enmachi HorikawaMarutamachi
HorikawaGojo NishiojiShijo
0 0

Output for the Sample Input

2
impossible
13

5

4

6

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem C

!

Input: C.txt

You are one of ICPC participants and in charge of developing a library for multiprecision numbers
and radix conversion. You have just finished writing the code, so next you have to test if it
works correctly. You decided to write a simple, well-known factorial function for this purpose:

M ! =
M∏
i=1

i = M × (M − 1)× · · · × 2× 1, 0! = 1.

Your task is to write a program that shows the number of trailing zeros when you compute M !
in base N , given N and M .

Input

The input contains multiple data sets. Each data set is described by one line in the format
below:

N M

where N is a decimal number between 8 and 36 inclusive, and M is given in the string repre-
sentation in base N . Exactly one white space character appears between them.

The string representation of M contains up to 12 characters in base N . In case N is greater
than 10, capital letters A, B, C, ... may appear in the string representation, and they represent
10, 11, 12, ..., respectively.

The input is terminated by a line containing two zeros. You should not process this line.

Output

For each data set, output a line containing a decimal integer, which is equal to the number of
trailing zeros in the string representation of M ! in base N .

Sample Input

10 500
16 A
0 0

7

Output for the Sample Input

124
2

8

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem D

Speed

Input: D.txt

Do you know Speed? It is one of popular card games, in which two players compete how quick
they can move their cards to tables.

To play Speed, two players sit face-to-face first. Each player has a deck and a tableau assigned
for him, and between them are two tables to make a pile on, one in left and one in right. A
tableau can afford up to only four cards.

There are some simple rules to carry on the game:

1. A player is allowed to move a card from his own tableau onto a pile, only when the rank
of the moved card is a neighbor of that of the card on top of the pile. For example A and
2, 4 and 3 are neighbors. A and K are also neighbors in this game.

2. He is also allowed to draw a card from the deck and put it on a vacant area of the tableau.

3. If both players attempt to move cards on the same table at the same time, only the faster
player can put a card on the table. The other player cannot move his card to the pile (as
it is no longer a neighbor of the top card), and has to bring it back to his tableau.

First each player draws four cards from his deck, and places them face on top on the tableau.
In case he does not have enough cards to fill out the tableau, simply draw as many as possible.
The game starts by drawing one more card from the deck and placing it on the tables on their
right simultaneously. If the deck is already empty, he can move an arbitrary card on his tableau
to the table.

Then they continue performing their actions according to the rule described above until both
of them come to a deadend, that is, have no way to move cards. Every time a deadend occurs,
they start over from each drawing a card (or taking a card from his or her tableau) and placing
on his or her right table, regardless of its face. The player who has run out of his card first is
the winner of the game.

Mr. James A. Games is so addicted in this simple game, and decided to develop robots that
plays it. He has just completed designing the robots and their program, but is not sure if they
work well, as the design is so complicated. So he asked you, a friend of his, to write a program
that simulates the robots.

The algorithm for the robots is designed as follows:

9

• A robot draws cards in the order they are dealt.
– Each robot is always given one or more cards.
– In the real game of Speed, the players first classify cards by their colors to enable

them to easily figure out which player put the card. But this step is skipped in this
simulation.

– The game uses only one card set split into two. In other words, there appears at most
one card with the same face in the two decks given to the robots.

• As a preparation, each robot draws four cards, and puts them to the tableau from right
to left.

– If there are not enough cards in its deck, draw all cards in the deck.

• After this step has been completed on both robots, they synchronize to each other and
start the game by putting the first cards onto the tables in the same moment.

– If there remains one or more cards in the deck, a robot draws the top one and puts it
onto the right table. Otherwise, the robot takes the rightmost card from its tableau.

• Then two robots continue moving according to the basic rule of the game described above,
until neither of them can move cards anymore.

– When a robot took a card from its tableau, it draws a card (if possible) from the deck
to fill the vacant position after the card taken is put onto a table.

– It takes some amount of time to move cards. When a robot completes putting a card
onto a table while another robot is moving to put a card onto the same table, the
robot in motion has to give up the action immediately and returns the card to its
original position.

– A robot can start moving to put a card on a pile at the same time when the neighbor
is placed on the top of the pile.

– If two robots try to put cards onto the same table at the same moment, only the
robot moving a card to the left can successfully put the card, due to the position
settings.

– When a robot has multiple candidates in its tableau, it prefers the cards which can
be placed on the right table to those which cannot. In case there still remain multiple
choices, the robot prefers the weaker card.

• When it comes to a deadend situation, the robots start over from each putting a card to
the table, then continue moving again according to the algorithm above.

• When one of the robots has run out the cards, i.e., moved all dealt cards, the game ends.
– The robot which has run out the cards wins the game.
– When both robots run out the cards at the same moment, the robot which moved

the stronger card in the last move wins.

The strength among the cards is determined by their ranks, then by the suits. The ranks are
strong in the following order: A > K > Q > J > X (10) > 9 > · · · > 3 > 2. The suits are strong
in the following order: S (Spades) > H (Hearts) > D (Diamonds) > C (Cloves). In other words,
SA is the strongest and C2 is the weakest.

The robots require the following amount of time to complete each action:

10

• 300 milliseconds to draw a card to the tableau,

• 500 milliseconds to move a card to the right table,

• 700 milliseconds to move a card to the left table, and

• 500 milliseconds to return a card to its original position.

Cancelling an action always takes the constant time of 500ms, regardless of the progress of
the action being cancelled. This time is counted from the exact moment when the action is
interrupted, not the beginning time of the action.

You may assume that these robots are well-synchronized, i.e., there is no clock skew between
them.

For example, suppose Robot A is given the deck “S3 S5 S8 S9 S2” and Robot B is given the deck
“H7 H3 H4”, then the playing will be like the description below. Note that, in the description,
“the table A” (resp. “the table B”) denotes the right table for Robot A (resp. Robot B).

• Robot A draws four cards S3, S5, S8, and S9 to its tableau from right to left. Robot B
draws all the three cards H7, H3, and H4.

• Then the two robots synchronize for the game start. Let this moment be 0ms.

• At the same moment, Robot A starts moving S2 to the table A from the deck, and Robot
B starts moving H7 to the table B from the tableau.

• At 500ms, the both robots complete their moving cards. Then Robot A starts moving S3
to the table A 1(which requires 500ms), and Robot B starts moving H3 also to the table
A (which requires 700ms).

• At 1000ms, Robot A completes putting S3 on the table A. Robot B is interrupted its move
and starts returning H3 to the tableau (which requires 500ms). At the same time Robot
A starts moving S8 to the table B (which requires 700ms).

• At 1500ms, Robot B completes returning H3 and starts moving H4 to the table A (which
requires 700ms).

• At 1700ms, Robot A completes putting S8 and starts moving S9 to the table B.

• At 2200ms, Robot B completes putting H4 and starts moving H3 to the table A.

• At 2400ms, Robot A completes putting S9 and starts moving S5 to the table A.

• At 2900ms, The both robots are to complete putting the cards on the table A. Since Robot
B is moving the card to the table left to it, Robot B completes putting H3. Robot A is
interrupted.

• Now Robot B has finished moving all the dealt cards, so Robot B wins this game.

11

Input

The input consists of multiple data sets, each of which is described by four lines. The first line
of each data set contains an integer NA, which specifies the number of cards to be dealt as a
deck to Robot A. The next line contains a card sequences of length NA. Then the number NB

and card sequences of length NB for Robot B follows, specified in the same manner.

In a card sequence, card specifications are separated with one space character between them.
Each card specification is a string of 2 characters. The first character is one of ‘S’ (spades), ‘H’
(hearts), ‘D’ (diamonds) or ‘C’ (cloves) and specifies the suit. The second is one of ‘A’, ‘K’, ‘Q’,
‘J’, ‘X’ (for 10) or a digit between ‘9’ and ‘2’, and specifies the rank. As this game is played with
only one card set, there is no more than one card of the same face in each data set.

The end of the input is indicated by a single line containing a zero.

Output

For each data set, output the result of a game in one line. Output “A wins.” if Robot A wins,
or output “B wins.” if Robot B wins. No extra characters are allowed in the output.

Sample Input

1
SA
1
C2
2
SA HA
2
C2 C3
5
S3 S5 S8 S9 S2
3
H7 H3 H4
10
H7 CJ C5 CA C6 S2 D8 DA S6 HK
10
C2 D6 D4 H5 DJ CX S8 S9 D3 D5
0

Output for the Sample Input

A wins.
B wins.
B wins.
A wins.

12

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem E

Spirograph

Input: E.txt

Some of you might have seen instruments like the figure below.

A

B

Figure 1: Spirograph

There are a fixed circle (indicated by A in the figure) and a smaller interior circle with some
pinholes (indicated by B). By putting a pen point through one of the pinholes and then rolling
the circle B without slipping around the inside of the circle A, we can draw curves as illustrated
below. Such curves are called hypotrochoids.

Figure 2: An Example Hypotrochoid

Your task is to write a program that calculates the length of hypotrochoid, given the radius of
the fixed circle A, the radius of the interior circle B, and the distance between the B’s centroid
and the used pinhole.

13

Input

The input consists of multiple test cases. Each test case is described by a single line in which
three integers P , Q and R appear in this order, where P is the radius of the fixed circle A, Q
is the radius of the interior circle B, and R is the distance between the centroid of the circle B
and the pinhole. You can assume that 0 ≤ R < Q < P ≤ 1000. P , Q, and R are separated by
a single space, while no other spaces appear in the input.

The end of input is indicated by a line with P = Q = R = 0.

Output

For each test case, output the length of the hypotrochoid curve. The error must be within
10−2(= 0.01).

Sample Input

3 2 1
3 2 0
0 0 0

Output for the Sample Input

13.36
6.28

14

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem F

Mysterious Dungeons

Input: F.txt

The Kingdom of Aqua Canora Mystica is a very affluent and peaceful country, but around the
kingdom, there are many evil monsters that kill people. So the king gave an order to you to kill
the master monster.

You came to the dungeon where the monster lived. The dungeon consists of a grid of square
cells. You explored the dungeon moving up, down, left and right. You finally found, fought
against, and killed the monster.

Now, you are going to get out of the dungeon and return home. However, you found strange
carpets and big rocks are placed in the dungeon, which were not there until you killed the
monster. They are caused by the final magic the monster cast just before its death! Every rock
occupies one whole cell, and you cannot go through that cell. Also, each carpet covers exactly
one cell. Each rock is labeled by an uppercase letter and each carpet by a lowercase. Some of
the rocks and carpets may have the same label.

While going around in the dungeon, you observed the following behaviors. When you enter
into the cell covered by a carpet, all the rocks labeled with the corresponding letter (e.g., the
rocks with ‘A’ for the carpets with ‘a’) disappear. After the disappearance, you can enter the
cells where the rocks disappeared, but if you enter the same carpet cell again or another carpet
cell with the same label, the rocks revive and prevent your entrance again. After the revival,
you have to move on the corresponding carpet cell again in order to have those rocks disappear
again.

Can you exit from the dungeon? If you can, how quickly can you exit? Your task is to write
a program that determines whether you can exit the dungeon, and computes the minimum
required time.

Input

The input consists of some data sets.

Each data set begins with a line containing two integers, W and H (3 ≤ W,H ≤ 30). In each
of the following H lines, there are W characters, describing the map of the dungeon as W ×H
grid of square cells. Each character is one of the following:

• ‘@’ denoting your current position,

• ‘<’ denoting the exit of the dungeon,

15

• A lowercase letter denoting a cell covered by a carpet with the label of that letter,

• An uppercase letter denoting a cell occupied by a rock with the label of that letter,

• ‘#’ denoting a wall, and

• ‘.’ denoting an empty cell.

Every dungeon is surrounded by wall cells (‘#’), and has exactly one ‘@’ cell and one ‘<’ cell.
There can be up to eight distinct uppercase labels for the rocks and eight distinct lowercase
labels for the carpets.

You can move to one of adjacent cells (up, down, left, or right) in one second. You cannot move
to wall cells or the rock cells.

A line containing two zeros indicates the end of the input, and should not be processed.

Output

For each data set, output the minimum time required to move from the ‘@’ cell to the ‘<’ cell,
in seconds, in one line. If you cannot exit, output −1.

Sample Input

8 3
########
#<A.@.a#
########
8 3
########
#<AaAa@#
########
8 4
########
#<EeEe@#
#FG.e#.#
########
8 8
########
#mmm@ZZ#
#mAAAbZ#
#mABBBZ#
#mABCCd#
#aABCDD#
#ZZcCD<#
########
0 0

16

Output for the Sample Input

7
-1
7
27

17

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem G

Repeated Subsequences

Input: G.txt

You are a treasure hunter traveling around the world. Finally, you’ve got an ancient text
indicating the place where the treasure was hidden. The ancient text looks like a meaningless
string of characters at first glance. Actually, the secret place is embedded as the longest repeated
subsequence of the text.

Well, then, what is the longest repeated subsequence of a string? First, you split the given string
S into two parts F and R. Then, you take the longest common subsequence L of F and R
(longest string L that is a subsequence of both F and R). Since there are many possible ways
to split S into two parts, there are many possible L’s. The longest repeated subsequence is the
longest one among them. For example, the longest repeated subsequence of “ABCABCABAB”
is “ABAB”, which is obtained when you split “ABCABCABAB” into “ABCABC” and “ABAB”.

Now your task is clear. Please find the longest repeated subsequence and get the hidden treasure!

Input

The input consists of multiple data sets. Each data set comes with a single line that contains
one string of up to 300 capital letters. It is guaranteed that there is at least one repeated
subsequence in each string.

The end of input is indicated by a line that contains “#END”. This line should not be processed.

Output

For each data set, print the longest repeated subsequence on a line. If there are multiple longest
subsequence, print any one of them.

Sample Input

ABCABCABAB
ZZZZZZZZZZZZ
#END

Output for the Sample Input

ABAB
ZZZZZZ

18

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem H

Petoris

Input: H.txt

You are playing a puzzle game named petoris. It is played with a board divided into square
grids and square tiles each of which fits to a single grid.

In each step of the game, you have a board partially filled with tiles. You also have a block
consisting of several tiles. You are to place this block somewhere on the board or to discard it,
under the following restrictions on placement:

• the block can be rotated, but cannot be divided nor flipped;

• no tiles of the block can collide with any tiles existing on the board; and

• all the tiles of the block need to be placed inside the board.

Your task is to write a program to find the maximum score you can earn in this step. Here, the
score is the number of the horizontal lines fully filled with tiles after the block is placed, or −1
in case of discard.

Input

The first line of the input is N , the number of data sets. Then N data sets follow.

Each data set consists of lines describing a block and a board. Each description (both for a block
and a board) starts with a line containing two integer H and W , the vertical and horizontal
dimension. Then H lines follow, each with W characters, where a ‘#’ represents a tile and ‘.’ a
vacancy. You can assume that 0 < H ≤ 64 and 0 < W ≤ 64. Each block consists of one or more
tiles all of which are connected. Each board contains zero or more tiles, and has no horizontal
line fully filled with tiles at the initial state.

Output

For each data set, print in a single line the maximum possible score.

19

Sample Input

5
4 4
....
....
####
....
12 8
........
........
........
........
........
.......#
##.##..#
.#######
.#######
.#######
.#######
.####.#.
4 4
....
....
.###
...#
12 8
........
........
........
........
........
........
........
##...###
##.#####
#######.
#######.
#######.
4 4
####
#..#
#..#
####
12 8
........

20

........

........

........

........

.......#
##.##..#
##....##
##.##.##
##.##.##
##....##
.####.#.
2 2
##
#.
3 3
.##
.##
##.
4 4
....
.##.
.##.
....
2 2
..
..

Output for the Sample Input

4
1
4
-1
2

21

ACM International Collegiate Programming Contest
Summer Camp (Day 2), Tokyo, 2007–09–23

Problem I

Pythagoraslope

Input: I.txt

Alice, your girlfriend, is a student at an art school. She is in the final year, and now working
hard to build a facture for fulfilling the requirement to graduate. Her work is a large pinball
with many straight slopes. Before starting to build, she has made several plans, but is unsure if
they work as expected. So she asked you, a professional programmer, for help.

You have modeled this situation by a two dimensional plane with some line segments on it. In
this model, there is gravitation downward, i.e., in the decreasing direction of y-coordinate. Your
task is to write a program that simulates the pinball, and compute the last position where the
ball crosses the x-axis.

You may assume coefficient of restitution between the slopes and the ball is 0, i.e., when the ball
collides a slope, it instantly loses the velocity component orthogonal to the slope. And since her
pinball is so large, you may also assume that the volume of the ball is negligible.

Input

The input consists of multiple data sets. Each data set is given in the format below.

N

g

x y

x1,1 y1,1 x1,2 y1,2

. . .

xN,1 yN,1 xN,2 yN,2

where N (N ≤ 100) is the number of slopes, g is gravity acceleration, and (x, y) is the initial
position of the ball. Each of the following N lines represents a slope, which is a line segment
between (xi,1, yi,1) and (xi,2, yi,2).

You may assume that:

• all coordinates are more than or equal to 1, and less than or equal to 10,000;

• xi,1 6= xi,2 and yi,1 6= yi,2 for all 1 ≤ i ≤ N ;

• no two line segments cross each other;

22

• extending or shrinking a slope by the length of 0.0001 does not change the ball’s trail, that
is, do not change the set of slopes where the ball passes;

• the ball never collides to a slope at the angle of 90± 0.0001 degrees from the slope; and

• the initial position of the ball never lies on any slope.

The end of the input is indicated by a line containing a single zero. This is not a part of the
data sets, and you must not process it.

Output

For each data set, output the x-coordinate of the final crossing point of the ball’s trail and the
x-axis. Your program may print any number of digits after the decimal point, but the output
must not contain an error greater than 10−4(= 0.0001).

Sample Input

3
1
120 1000
100 100 180 20
170 10 270 30
270 40 400 20
0

Output for the Sample Input

403.87458314

23

