
Problem A: Find the Winning Move
Source file: win.{c, cpp, java, pas}
Input file: win.in

Output file: win.out

4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to bottom) and four
columns (numbered 0 to 3 from left to right). There are two players, x and o, who move alternately with x
always going first. The game is won by the first player to get four of his or her pieces on the same row,
column, or diagonal. If the board is full and neither player has won then the game is a draw.

Assuming that it is x's turn to move, x is said to have a forced win if x can make a move such that no
matter what moves o makes for the rest of the game, x can win. This does not necessarily mean that x
will win on the very next move, although that is a possibility. It means that x has a winning strategy that
will guarantee an eventual victory regardless of what o does.

Your job is to write a program that, given a partially-completed game with x to move next, will
determine whether x has a forced win. You can assume that each player has made at least two moves,
that the game has not already been won by either player, and that the board is not full.

The input file contains one or more test cases, followed by a line beginning with a dollar sign that signals
the end of the file. Each test case begins with a line containing a question mark and is followed by four
lines representing the board; formatting is exactly as shown in the example. The characters used in a
board description are the period (representing an empty space), lowercase x, and lowercase o. For each
test case, output a line containing the (row, column) position of the first forced win for x, or '#####' if
there is no forced win. Format the output exactly as shown in the example.

For this problem, the first forced win is determined by board position, not the number of moves required
for victory. Search for a forced win by examining positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ...,
(3, 2), (3, 3), in that order, and output the first forced win you find. In the second test case below, note
that x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will still ensure victory
(although it unnecessarily delays it), and position (0, 1) comes first.

Example input:
?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo
$

Problem A: Find the Winning Move

http://www.cs.smsu.edu/~rcjudge/1999/win.html (1 of 2) [2/23/2000 11:45:01 PM]

Example output:
#####
(0,1)

Problem A: Find the Winning Move

http://www.cs.smsu.edu/~rcjudge/1999/win.html (2 of 2) [2/23/2000 11:45:01 PM]

?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo
?
xoox
..o.
..xx
..o.
?
xoo.
..x.
..x.
xoo.
?
oxxo
xoox
xoox
x..x
?
xoxo
o..x
x..o
oxox
?
xo.x
o..x
ox.x
oo..
?
x..x
.xx.
.oo.
o..o
?
oox.
oo..
x..x
..x.
?
.oo.
.xx.
.oo.
.xx.
$

http://www.cs.smsu.edu/~rcjudge/1999/win.in

http://www.cs.smsu.edu/~rcjudge/1999/win.in [2/23/2000 11:45:01 PM]

#####
(0,1)
(1,0)
(0,3)
#####
#####
(3,3)
#####
(2,2)
#####

http://www.cs.smsu.edu/~rcjudge/1999/win.out

http://www.cs.smsu.edu/~rcjudge/1999/win.out [2/23/2000 11:45:02 PM]

Problem B: Myacm Triangles
Source file: triangle.{c, cpp, java, pas}
Input file: triangle.in

Output file: triangle.out

There has been considerable archeological work on the ancient Myacm culture. Many artifacts have been
found in what have been called power fields: a fairly small area, less than 100 meters square where there
are from four to fifteen tall monuments with crystals on top. Such an area is mapped out above. Most of
the artifacts discovered have come from inside a triangular area between just three of the monuments,
now called the power triangle. After considerable analysis archeologists agree how this triangle is
selected from all the triangles with three monuments as vertices: it is the triangle with the largest possible
area that does not contain any other monuments inside the triangle or on an edge of the triangle. Each
field contains only one such triangle.

Archeological teams are continuing to find more power fields. They would like to automate the task of
locating the power triangles in power fields. Write a program that takes the positions of the monuments
in any number of power fields as input and determines the power triangle for each power field.

A useful formula: the area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3) is the absolute value of

0.5 × [(y3 − y1)(x2 − x1) − (y2 − y1)(x3 − x1)].

For each power field there are several lines of data. The first line is the number of monuments: at least 4,
and at most 15. For each monument there is a data line that starts with a one character label for the
monument and is followed by the coordinates of the monument, which are nonnegative integers less than
100. The first label is A, and the next is B, and so on.

There is at least one such power field described. The end of input is indicated by a 0 for the number of
monuments. The first sample data below corresponds to the diagram in the problem.

For each power field there is one line of output. It contains the three labels of the vertices of the power
triangle, listed in increasing alphabetical order, with no spaces.

Example input:

6

Problem B: Myacm Triangles

http://www.cs.smsu.edu/~rcjudge/1999/triangle.html (1 of 2) [2/23/2000 11:45:02 PM]

A 1 0
B 4 0
C 0 3
D 1 3
E 4 4
F 0 6
4
A 0 0
B 1 0
C 99 0
D 99 99
0

Example output:

BEF
BCD

Problem B: Myacm Triangles

http://www.cs.smsu.edu/~rcjudge/1999/triangle.html (2 of 2) [2/23/2000 11:45:02 PM]

6
A 1 0
B 4 0
C 0 3
D 1 3
E 4 4
F 0 6
4
A 0 0
B 1 0
C 99 0
D 99 99
6
A 10 3
B 10 6
C 25 3
D 40 3
E 42 20
F 60 1
4
A 0 1
B 10 1
C 0 10
D 15 0
4
A 0 0
B 1 0
C 2 5
D 3 0
15
A 0 30
B 45 32
C 90 30
D 60 1
E 25 0
F 24 15
G 25 15
H 28 20
I 24 16
J 24 17
K 61 16
L 61 17
M 61 18
N 62 16
O 62 17
0

http://www.cs.smsu.edu/~rcjudge/1999/triangle.in

http://www.cs.smsu.edu/~rcjudge/1999/triangle.in [2/23/2000 11:45:03 PM]

BEF
BCD
BDE
ABC
BCD
BDE

http://www.cs.smsu.edu/~rcjudge/1999/triangle.out

http://www.cs.smsu.edu/~rcjudge/1999/triangle.out [2/23/2000 11:45:04 PM]

Problem C: Exchange Rates
Source file: exchange.{c, cpp, java, pas}
Input file: exchange.in

Output file: exchange.out

Using money to pay for goods and services usually makes life easier, but sometimes people prefer to
trade items directly without any money changing hands. In order to ensure a consistent "price", traders
set an exchange rate between items. The exchange rate between two items A and B is expressed as two
positive integers m and n, and says that m of item A is worth n of item B. For example, 2 stoves might be
worth 3 refrigerators. (Mathematically, 1 stove is worth 1.5 refrigerators, but since it's hard to find half a
refrigerator, exchange rates are always expressed using integers.)

Your job is to write a program that, given a list of exchange rates, calculates the exchange rate between
any two items.

The input file contains one or more commands, followed by a line beginning with a period that signals
the end of the file. Each command is on a line by itself and is either an assertion or a query. An assertion
begins with an exclamation point and has the format

! m itema = n itemb

where itema and itemb are distinct item names and m and n are both positive integers less than 100. This
command says that m of itema are worth n of itemb. A query begins with a question mark, is of the form

? itema = itemb

and asks for the exchange rate between itema and itemb, where itema and itemb are distinct items that
have both appeared in previous assertions (although not necessarily the same assertion). For each query,
output the exchange rate between itema and itemb based on all the assertions made up to that point.
Exchange rates must be in integers and must be reduced to lowest terms. If no exchange rate can be
determined at that point, use question marks instead of integers. Format all output exactly as shown in
the example.

Note:

Item names will have length at most 20 and will contain only lowercase letters.●

Only the singular form of an item name will be used (no plurals).●

There will be at most 60 distinct items.●

There will be at most one assertion for any pair of distinct items.●

There will be no contradictory assertions. For example, "2 pig = 1 cow", "2 cow = 1 horse", and "2
horse = 3 pig" are contradictory.

●

Assertions are not necessarily in lowest terms, but output must be.●

Although assertions use numbers less than 100, queries may result in larger numbers that will not
exceed 10000 when reduced to lowest terms.

●

Example input:

Problem C: Exchange Rates

http://www.cs.smsu.edu/~rcjudge/1999/exchange.html (1 of 2) [2/23/2000 11:45:05 PM]

! 6 shirt = 15 sock
! 47 underwear = 9 pant
? sock = shirt
? shirt = pant
! 2 sock = 1 underwear
? pant = shirt
.

Example output:
5 sock = 2 shirt
? shirt = ? pant
45 pant = 188 shirt

Problem C: Exchange Rates

http://www.cs.smsu.edu/~rcjudge/1999/exchange.html (2 of 2) [2/23/2000 11:45:05 PM]

! 63 mango = 14 papaya
? papaya = mango
! 5 passionfruit = 31 guava
? guava = mango
? papaya = passionfruit
! 1 thermonuclearwarhead = 3 secretrockethovercar
! 1 fork = 1 spoon
! 2 thermonuclearwarhead = 4 armoredcommandotruck
? armoredcommandotruck = secretrockethovercar
! 1 p = 1 q
! 3 w = 3 x
! 4 x = 4 y
! 1 s = 1 t
! 1 q = 1 r
! 1 r = 1 s
! 3 j = 12 k
! 1 k = 1 l
! 1 l = 1 m
! 3 b = 4 c
! 1 c = 5 d
! 3 d = 2 e
! 1 e = 7 f
! 4 f = 2 g
! 1 m = 1 n
! 1 t = 1 u
! 1 u = 1 v
! 1 a = 2 b
! 1 n = 1 o
! 1 o = 1 p
! 2 v = 2 w
! 1 g = 10 h
! 7 h = 2 i
! 32 i = 16 j
! 5 y = 1 z
? a = z
! 9 cat = 1 dog
! 1 cow = 12 chicken
? chicken = dog
! 6 sheep = 3 mule
! 4 dog = 2 mule
! 2 chicken = 1 sheep
? cow = cat
? chicken = dog
! 4 television = 83 knife
! 91 knife = 2 dvdplayer
! 1 microwave = 37 fork
! 7 toaster = 2 microwave
! 2 spoon = 1 knife
? dvdplayer = toaster
? fork = cow
? toaster = spoon
! 47 car = 13 sportutilityvehicle
! 32 truck = 53 car
? sportutilityvehicle = truck
! 6 shirt = 15 sock
! 47 underwear = 9 pant
? sock = shirt
? shirt = pant
! 2 sock = 1 underwear
? pant = shirt
.

http://www.cs.smsu.edu/~rcjudge/1999/exchange.in

http://www.cs.smsu.edu/~rcjudge/1999/exchange.in [2/23/2000 11:45:05 PM]

2 papaya = 9 mango
? guava = ? mango
? papaya = ? passionfruit
2 armoredcommandotruck = 3 secretrockethovercar
9 a = 320 z
? chicken = ? dog
1 cow = 54 cat
2 chicken = 1 dog
74 dvdplayer = 637 toaster
? fork = ? cow
7 toaster = 74 spoon
689 sportutilityvehicle = 1504 truck
5 sock = 2 shirt
? shirt = ? pant
45 pant = 188 shirt

http://www.cs.smsu.edu/~rcjudge/1999/exchange.out

http://www.cs.smsu.edu/~rcjudge/1999/exchange.out [2/23/2000 11:45:05 PM]

Problem D: Loansome Car Buyer
Source file: loan.{c, cpp, java, pas}
Input file: loan.in

Output file: loan.out

Kara Van and Lee Sabre are lonesome. A few months ago they took out a loan to buy a new car, but now
they're stuck at home on Saturday night without wheels and without money. You see, there was a wreck
and the car was totaled. Their insurance paid $10,000, the current value of the car. The only problem is
that they owed the bank $15,000, and the bank wanted payment immediately, since there was no longer a
car for collateral. In just a few moments, this unfortunate couple not only lost their car, but lost an
additional $5,000 in cash too.

What Kara and Lee failed to account for was depreciation, the loss in value as the car ages. Each month
the buyer's loan payment reduces the amount owed on the car. However, each month, the car also
depreciates as it gets older. Your task is to write a program that calculates the first time, measured in
months, that a car buyer owes less money than a car is worth. For this problem, depreciation is specified
as a percentage of the previous month's value.

Input consists of information for several loans. Each loan consists of one line containing the duration in
months of the loan, the down payment, the amount of the loan, and the number of depreciation records
that follow. All values are nonnegative, with loans being at most 100 months long and car values at most
$75,000. Since depreciation is not constant, the varying rates are specified in a series of depreciation
records. Each depreciation record consists of one line with a month number and depreciation percentage,
which is more than 0 and less than 1. These are in strictly increasing order by month, starting at month 0.
Month 0 is the depreciation that applies immediately after driving the car off the lot and is always present
in the data. All the other percentages are the amount of depreciation at the end of the corresponding
month. Not all months may be listed in the data. If a month is not listed, then the previous depreciation
percentage applies. The end of the input is signalled by a negative loan duration - the other three values
will be present but indeterminate.

For simplicity, we will assume a 0% interest loan, thus the car's initial value will be the loan amount plus
the down payment. It is possible for a car's value and amount owed to be positive numbers less than
$1.00. Do not round values to a whole number of cents ($7,347.635 should not be rounded to $7,347.64).

Consider the first example below of borrowing $15,000 for 30 months. As the buyer drives off the lot, he
still owes $15,000, but the car has dropped in value by 10% to $13,950. After 4 months, the buyer has
made 4 payments, each of $500, and the car has further depreciated 3% in months 1 and 2 and 0.2% in
months 3 and 4. At this time, the car is worth $13,073.10528 and the borrower only owes $13,000.

For each loan, the output is the number of complete months before the borrower owes less than the car is
worth. Note that English requires plurals (5 months) on all values other than one (1 month).

Example input:

30 500.0 15000.0 3

Problem D: Loansome Car Buyer

http://www.cs.smsu.edu/~rcjudge/1999/loan.html (1 of 2) [2/23/2000 11:45:05 PM]

0 .10
1 .03
3 .002
12 500.0 9999.99 2
0 .05
2 .1
60 2400.0 30000.0 3
0 .2
1 .05
12 .025
-99 0 17000 1

Example output:

4 months
1 month
49 months

Problem D: Loansome Car Buyer

http://www.cs.smsu.edu/~rcjudge/1999/loan.html (2 of 2) [2/23/2000 11:45:05 PM]

30 500.0 15000.0 3
0 .10
1 .03
3 .002
12 500 9999.99 2
0 .05
2 .1
60 2400.0 30000.0 3
0 .2
1 .05
12 .025
100 0 60000 101
0 .1
1 .1
2 .01
3 .01
4 .1
5 .1
6 .01
7 .01
8 .01
9 .01
10 .1
11 .01
12 .01
13 .01
14 .01
15 .01
16 .01
17 .01
18 .01
19 .01
20 .1
21 .01
22 .01
23 .01
24 .01
25 .01
26 .01
27 .01
28 .01
29 .01
30 .1
31 .01
32 .01
33 .01
34 .01
35 .01
36 .01
37 .01
38 .01
39 .01
40 .1
41 .01
42 .01
43 .01
44 .01
45 .01
46 .01
47 .01
48 .01

http://www.cs.smsu.edu/~rcjudge/1999/loan.in

http://www.cs.smsu.edu/~rcjudge/1999/loan.in (1 of 3) [2/23/2000 11:45:06 PM]

49 .01
50 .1
51 .01
52 .01
53 .01
54 .01
55 .01
56 .01
57 .01
58 .01
59 .01
60 .1
61 .01
62 .01
63 .01
64 .01
65 .01
66 .01
67 .01
68 .01
69 .01
70 .1
71 .1
72 .1
73 .1
74 .1
75 .01
76 .01
77 .01
78 .01
79 .01
80 .1
81 .1
82 .1
83 .1
84 .1
85 .1
86 .1
87 .1
88 .1
89 .1
90 .1
91 .1
92 .1
93 .01
94 .01
95 .01
96 .1
97 .1
98 .1
99 .1
100 .1
100 0 75000 2
0 .10
99 .5
100 74999 1 1
0 .20
36 2000 10000 4
0 .2
1 .1
3 .01

http://www.cs.smsu.edu/~rcjudge/1999/loan.in

http://www.cs.smsu.edu/~rcjudge/1999/loan.in (2 of 3) [2/23/2000 11:45:06 PM]

10 .005
36 0 12000 3
0 .25
1 .1
10 .005
23 3000 5000 2
0 .15
20 .005
42 4000 0 1
0 .79
-10 0 0 4

http://www.cs.smsu.edu/~rcjudge/1999/loan.in

http://www.cs.smsu.edu/~rcjudge/1999/loan.in (3 of 3) [2/23/2000 11:45:06 PM]

4 months
1 month
49 months
99 months
100 months
0 months
11 months
27 months
0 months
0 months

http://www.cs.smsu.edu/~rcjudge/1999/loan.out

http://www.cs.smsu.edu/~rcjudge/1999/loan.out [2/23/2000 11:45:06 PM]

Problem E: Automatic Editing
Source file: autoedit.{c, cpp, java, pas}
Input file: autoedit.in

Output file: autoedit.out

Text-processing tools like awk and sed allow you to automatically perform a sequence of editing
operations based on a script. For this problem we consider the specific case in which we want to perform
a series of string replacements, within a single line of text, based on a fixed set of rules. Each rule
specifies the string to find, and the string to replace it with, as shown below.

Rule Find Replace-by
1. ban bab

2. baba be
3. ana any

4. ba b hind the g

To perform the edits for a given line of text, start with the first rule. Replace the first occurrence of the
find string within the text by the replace-by string, then try to perform the same replacement again on the
new text. Continue until the find string no longer occurs within the text, and then move on to the next
rule. Continue until all the rules have been considered. Note that (1) when searching for a find string, you
always start searching at the beginning of the text, (2) once you have finished using a rule (because the
find string no longer occurs) you never use that rule again, and (3) case is significant.

For example, suppose we start with the line

banana boat

and apply these rules. The sequence of transformations is shown below, where occurrences of a find
string are underlined and replacements are boldfaced. Note that rule 1 was used twice, then rule 2 was
used once, then rule 3 was used zero times, and then rule 4 was used once.

Before After
banana boat babana boat

babana boat bababa boat

bababa boat beba boat

beba boat behind the goat

The input contains one or more test cases, followed by a line containing only 0 (zero) that signals the end
of the file. Each test case begins with a line containing the number of rules, which will be between 1 and
10. Each rule is specified by a pair of lines, where the first line is the find string and the second line is the
replace-by string. Following all the rules is a line containing the text to edit. For each test case, output a
line containing the final edited text.

Both find and replace-by strings will be at most 80 characters long. Find strings will contain at least one
character, but replace-by strings may be empty (indicated in the input file by an empty line). During the

Problem E: Automatic Editing

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.html (1 of 2) [2/23/2000 11:45:06 PM]

edit process the text may grow as large as 255 characters, but the final output text will be less than 80
characters long.

The first test case in the sample input below corresponds to the example shown above.

Example input:

4
ban
bab
baba
be
ana
any
ba b
hind the g
banana boat
1
t
sh
toe or top
0

Example output:

behind the goat
shoe or shop

Problem E: Automatic Editing

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.html (2 of 2) [2/23/2000 11:45:06 PM]

4
ban
bab
baba
be
ana
any
ba b
hind the g
banana boat
1
t
sh
toe or top
1
x
o
xxx
4
A
?
T

tat
tt
T
?
TtTTaTTTtTTTTaTTTTTt
2
on
off
off
on
Upon this only
10
a
bxb
b
cxc
c
dxd
d
exe
e
fxf
f
gxg
g
hxh
h

xxxxxxxxxxxxxxxxxxxxxx
22x
22
b
a
0

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.in

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.in [2/23/2000 11:45:07 PM]

behind the goat
shoe or shop
ooo
ttt
Upon this only
bbbbbbx

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.out

http://www.cs.smsu.edu/~rcjudge/1999/autoedit.out [2/23/2000 11:45:08 PM]

Problem F: Robot Motion
Source file: robot.{c, cpp, java, pas}
Input file: robot.in

Output file: robot.out

A robot has been programmed to follow the instructions in its path. Instructions for the next direction the
robot is to move are laid down in a grid. The possible instructions are

N north (up the page)
S south (down the page)
E east (to the right on the page)
W west (to the left on the page)

For example, suppose the robot starts on the north (top) side of Grid 1 and starts south (down). The path
the robot follows is shown. The robot goes through 10 instructions in the grid before leaving the grid.

Compare what happens in Grid 2: the robot goes through 3 instructions only once, and then starts a loop
through 8 instructions, and never exits.

You are to write a program that determines how long it takes a robot to get out of the grid or how the
robot loops around.

There will be one or more grids for robots to navigate. The data for each is in the following form. On the
first line are three integers separated by blanks: the number of rows in the grid, the number of columns in
the grid, and the number of the column in which the robot enters from the north. The possible entry
columns are numbered starting with one at the left. Then come the rows of the direction instructions.
Each grid will have at least one and at most 10 rows and columns of instructions. The lines of
instructions contain only the characters N, S, E, or W with no blanks. The end of input is indicated by a
row containing 0 0 0.

For each grid in the input there is one line of output. Either the robot follows a certain number of
instructions and exits the grid on any one the four sides or else the robot follows the instructions on a
certain number of locations once, and then the instructions on some number of locations repeatedly. The
sample input below corresponds to the two grids above and illustrates the two forms of output. The word

Problem F: Robot Motion

http://www.cs.smsu.edu/~rcjudge/1999/robot.html (1 of 2) [2/23/2000 11:45:08 PM]

"step" is always immediately followed by "(s)" whether or not the number before it is 1.

Example input:

3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
0 0 0

Example output:

10 step(s) to exit
3 step(s) before a loop of 8 step(s)

Problem F: Robot Motion

http://www.cs.smsu.edu/~rcjudge/1999/robot.html (2 of 2) [2/23/2000 11:45:08 PM]

3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
1 6 1
EEEEWN
3 3 2
ENW
SSS
EWE
1 1 1
W
1 3 3
SWE
1 4 2
ESWW
2 1 1
S
S
3 4 2
ESWW
WWEE
NNNN
3 4 2
ESWW
WEEE
NNNN
3 4 2
ESWW
WESE
NSWN
3 4 2
ESNW
WSNE
NENN
4 4 3
SWWE
SWWW
SESN
ENEN
10 10 10
SWWWWWWWWW
EEEEEEEESN
SWWWWWWWWN
EEEEEEEESN
SWWWWWWWWN
EEEEEEEESN
SWWWWWWWWN
EEEEEEEESN
SWWWWWWWWN
EEEEEEEEEN
10 10 10
SWWWWWWWWW
EEEEEEEEES
SWWWWWWWWW
EEEEEEEEES

http://www.cs.smsu.edu/~rcjudge/1999/robot.in

http://www.cs.smsu.edu/~rcjudge/1999/robot.in (1 of 2) [2/23/2000 11:45:09 PM]

SWWWWWWWWW
EEEEEEEEES
SWWWWWWWWW
EEEEEEEEES
SWWWWWWWWW
EEEEEEEEES
0 0 0

http://www.cs.smsu.edu/~rcjudge/1999/robot.in

http://www.cs.smsu.edu/~rcjudge/1999/robot.in (2 of 2) [2/23/2000 11:45:09 PM]

10 step(s) to exit
3 step(s) before a loop of 8 step(s)
3 step(s) before a loop of 2 step(s)
1 step(s) to exit
1 step(s) to exit
1 step(s) to exit
1 step(s) to exit
2 step(s) to exit
3 step(s) to exit
4 step(s) to exit
5 step(s) to exit
6 step(s) to exit
3 step(s) before a loop of 12 step(s)
0 step(s) before a loop of 100 step(s)
100 step(s) to exit

http://www.cs.smsu.edu/~rcjudge/1999/robot.out

http://www.cs.smsu.edu/~rcjudge/1999/robot.out [2/23/2000 11:45:09 PM]

Notes to Judges
Read the Error Messages and Notes to Teams right now. ... Done? OK.

The judges' diskette contains one subdirectory for each problem, which includes the description in
HTML, the source file, the input and output files, and either an MS-DOS executable or Java bytecode
files. It contains a subdirectory called NOTES that includes the HTML source for these notes. It also
contains a subdirectory called JUDGE that includes enhanced versions of the judging utilities used in the
last two contests. If you do not already have a tried-and-true method for judging, you might want to take
a look at them. Instructions are provided in Using the Judging Utilities, and are available in text form in
the read.me file.

Regardless of what judging method you use, remember the following (the included utilities take care of
these details for you):

If a program is correct, the team's output file will match the correct output file exactly. If the match
is not exact, you will have to do a visual inspection to tell whether the problem is a wrong answer
or a presentation error.

●

Remove a team's diskette or write-protect it before judging to ensure that nothing is written to it.●

Always copy a fresh set of correct input and output files before judging a run, because teams'
programs have been known to trash files.

●

As in last year's contest,

problem solutions are unique and must be formatted exactly, so output can be judged using a file
comparison utility,

●

all problems are judged with one test file (which of course will include multiple test cases), and●

all input files have sentinels that signal the end of the input, so it is not necessary for teams to
detect end-of-file. (End-of-file handling differs between languages and sometimes between
different compilers for the same language. It can cause problems for teams using tools that they're
not used to.)

●

We think the easiest problems are Loansome Borrower and Automatic Editing, followed by Robot
Motion and Myacm Triangles, and then Find the Winning Move and Exchange Rates. We don't think any
of the problems are exceptionally hard. We expect strong teams to solve all six problems, and most teams
to solve one or two.

Andy (the toolsmith) wrote Automatic Editing, Robot Motion, and Myacm Triangles. Eric (the
webmaster) wrote Find the Winning Move and Exchange Rates. I wrote Loansome Borrower.

Eric will be your regional contact during the contest. If you have any questions or corrections you can
send him email at ericshade@mail.smsu.edu, or if it's an emergency you can phone him at
417-836-4944. Also check the Updates section of the web site periodically; if any files need to be
changed, corrections will be posted there.

John Cigas
Regional Chief Judge: Editor

Notes to Judges

http://www.cs.smsu.edu/~rcjudge/judges.html (1 of 2) [2/23/2000 11:45:11 PM]

Rockhurst University

Notes to Judges

http://www.cs.smsu.edu/~rcjudge/judges.html (2 of 2) [2/23/2000 11:45:11 PM]

	The 1999 ACM Mid-Central USA Problems
	Problem A: Find the Winning Move
	win.in
	win.out
	Problem B: Myacm Triangles
	triangle.in
	triangle.out
	Problem C: Exchange Rates
	exchange.in
	exchange.out
	Problem D: Loansome Car Buyer
	loan.in
	loan.out
	Problem E: Automatic Editing
	autoedit.in
	autoedit.out
	Problem F: Robot Motion
	robot.in
	robot.out
	Notes to Judges

