
Problem A
Asynchronous Exceptions

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 5 sec, Memory Limit: 64 MB

Your job is to simulate the operation on a machine called ACM (Asynchrounous Calculating Machine)
to determine how long each program takes to finish their job. This helps detecting unexpected thread
behaviors, like race and deadlock.

ACM has many processing units and can run many threads simultaneously. It runs a global scheduler,
which maintains all the threads, assigns a thread on each processing unit and manages all semaphores.
Each thread has its own thread id and every thread is one of three states: RUNNING, READY, and
WAITING. Global scheduler has one thread queue which contains all the threads in READY state.

explanation of a program

A program consists of one or more code blocks. Each code block has a list of ACM operations, including
the actual computations and thread creation. Each thread runs operations in only one of the given code
blocks, and it runs operations from the top of the block to the bottom, unless it receives killThread-signal
from other threads.

explanation of operations

ACM simulation program simulates 9 operations. Here I describe them all. Please note that word en-
closed by [] should have some actual name or value.

compute [clock] Spend [clock] clocks for computation. When this operation is interrupted after spend-
ing T clocks by other threads or the scheduler and is resumed later, it consumes [clock] - T clocks.

[thread-var] <- forkR [code block] Generate a native thread running on [code block] and store its id
in a thread variable [thread-var]. It can run simultaneously with any threads which are generated in
other processing unit. If [thread-var] is used before in the thread, its previous value is overwritten
and lost. (This means that we will not be able to refer to the thread although it might run forever.)

[thread-var] <- forkI [code block] Generate a virtual thread running on [code block] and store its id
in a thread variable [thread-var]. A virtual thread shares some OS resources with its parent thread,
so they can’t run simultaneously even there are idle processing units. This restriction is applied to
any two threads which are directly or indirectly connected by the parent-child relatinship of forkI.
If [thread-var] is used before in the thread, its previous value is overwritten and lost.

yield Make the current thread from running state to ready state. The thread goes to the end of the thread
queue.

killThread [thread-var] Send a kill signal to the [thread-var] thread. [thread-var] guaranteed to be
used in either forkR or forkI operations in the same code block before this operation. When a
thread receives a kill signal, it immediately cancels its resource requests by lock, changes into
ready state if it‘s in block state, and ends its operation when it’s in running state. This operation
does not change the semaphore values. If the target thread is already ended, this operation does
nothing.

lock [semaphore name] [amount] Request [amount] of [semaphore name]. If the value of [semaphore
name] is greater or equal to the [amount], it just subtracts the [amount] from the semaphore vari-
able. Otherwise, the operation blocks the current thread until the variable is greater or equal to the
[amount]. Once the variable gets greater or equal to the [amount], the thread gets into READY
state and goes into the thread queue after subtracting [amount] from the variable. If there are more
than one thread requesting for the same semaphore, the thread which locked the semaphore first

Problem A: Asynchronous Exceptions Page 1 of 19

always gets READY first. So, the other threads won’t get READY even if the semaphore variable
meets their demands. If there are more than one thread getting READY, the thread which locked
the semaphore earlier goes into the queue first.

unlock [semaphore name] [amount] Add [amount] to [semaphore name]. Values of semaphores can
be larger than initial values. The thread doesn’t get blocked at all by this operation.

loop [loop count] Run the code snippet between loop and corresponding next command for [loop
count] times.

next This corresponds a loop command in the same code block. The code snippet between loop and
next should be run.

end End the operation. This command only appears in the end of the code block, and each code block
has this operation at the end.

Each parameter should either be a name or a digit. A name is an alphabetic string (case-sensitive) and its
length is at most 200. Here are some explanations.

[thread-var] It is a name. It only refers to the id in the same thread. Each thread has its own value
even it has the same name.

[clock] It is a non-negative integer which is at most 1,000.

[semaphore-name] It is a name.

[amount] It is a non-negative integer which is at most 1,000.

[loop count] It is a non-negative integer which is at most 1,000.

Additionally, you may assume following constraints.

• Total number of lines that all threads evaluate throughout simulation never exceeds 100,000.

• Size of input file never exceeds 100KB.

explanation of a simulator

Threads are assigned to CPUs when

• a simulation starts. (A thread is assigned to CPU 1. Its code block is the first code block of the
input.)

• there are more than one threads that are in ready state which can be assigned to a CPU. (Threads
are asssinged in the thread queue order. If there are more than one CPUs that can be assinged to
the thread, the smallest CPU is selected.)

• time step is a multiple of time slice. (If the CPU has a thread that is running state, the thread goes
to ready state in asscending order of the CPU id. After this, threads are assigned to each CPU in
asscending order of the CPU id.)

In each step, the simulator does round-robin preemption (when time step is a multiple of time slice),
executes operations of each running threads and increments time step. When a compute operation is
executed, the thread gets computing time. A thread that has computing time greater than 0 cannot do any
operations. After each step, the simulator decrements positive computing time of each running thread.

Operations executed in the same time step is executed in ascending order of the CPU id. In the same
time step, a CPU id of an operation is greater or equal to CPU ids of operations which have already been
executed.

Time step starts from 0.

Problem A: Asynchronous Exceptions Page 2 of 19

Input

Input consists of multiple testcases.

Each testcase begins with a line that contains two integers separated by a space. They mean the number
of time steps of the simulation and the maximum number of threads that ACM is capable, respectively.
The next line contains a single integer, which indicates the number of CPUs available. The following line
has an integer that means time slice of the scheduler.

Description of semaphores follows. It begins with the number of semaphores which is followed by
information of each semaphore, one per line. The information of a semaphore consists of an alphabet
string (case-sensitive) and an integer, which specify the name of the semaphore and its initial value,
respectively.

Finally code blocks are given. The number of code blocks comes first, and then each code block is
described. The first line of the description of each code block is the name of the block (case-sensitive
alphabet string), followed by a colon (:). Following lines describe content of the code block. A code block
is an array of operations described above, and one operation is written in one line. You may assume that
every code block always ends with an ‘end’ operation.

Input terminates with two zeroes separated by a space character.

constraints

• Threre is 1 thread queue.

• The id of the n-th created thread is n.

• CPU ids are 1 though the number of CPUs.

• The number of time steps is at most 1,000.

• The maximum number of threads is at most 1,000.

• The number of CPUs is at most 100.

• Time slice is at most 1,000

• The number of semaphores is at most 1,000.

• The number of code blocks is at most 1,000.

Output

For each test case, print its case number on the first line.

If the number of living threads exceeds ACM‘s capacity, put information of all threads which terminated
before exceeding the capacity, and then put “<<oops>>”. If not, and if there are one or more threads not
finished at the end of the simulation, put information of all threads terminated, and then put “<<loop>>”.
Otherwise (i.e. when all threads terminates within the time), just put information of all threads. All quotes
are for clarity.

Information of threads must be written in increasing order of thread ID, one per line. Information of a
single thread is denoted by two integers, the thread ID and the time it terminated, separated by a single
space character.

Problem A: Asynchronous Exceptions Page 3 of 19

Sample Input

50 50

1

10

1

semaphore 1

1

codeBlockA:

loop 2

compute 10

next

end

50 50

1

10

1

semaphore 1

2

codeBlockA:

hoge <- forkR codeBlockB

yield

compute 1

killThread hoge

lock semaphore 1

compute 1

end

codeBlockB:

compute 1

lock semaphore 2

end

5 5

1

3

1

semaphore 1

1

codeBlockA:

hoge <- forkI codeBlockA

compute 1

end

5 5

1

2

1

semaphore 1

1

codeBlockA:

compute 1

hoge <- forkI codeBlockA

hoge <- forkI codeBlockA

end

0 0

Problem A: Asynchronous Exceptions Page 4 of 19

Output for the Sample Input

Case 1:

1 20

Case 2:

1 3

2 3

Case 3:

1 1

2 2

3 4

4 4

5 5

<<loop>>

Case 4:

1 1

2 3

3 3

<<oops>>

Problem A: Asynchronous Exceptions Page 5 of 19

Problem B
AYBABTU

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 10 sec, Memory Limit: 256 MB

There is a tree that has n nodes and n − 1 edges. There are military bases on t out of the n nodes. We
want to disconnect the bases as much as possible by destroying k edges. The tree will be split into k + 1
regions when we destroy k edges. Given the purpose to disconnect the bases, we only consider to split
in a way that each of these k + 1 regions has at least one base. When we destroy an edge, we must pay
destroying cost. Find the minimum destroying cost to split the tree.

Input

The input consists of multiple data sets. Each data set has the following format. The first line consists
of three integers n, t, and k (1 ≤ n ≤ 10,000, 1 ≤ t ≤ n, 0 ≤ k ≤ t − 1). Each of the next n − 1 lines
consists of three integers representing an edge. The first two integers represent node numbers connected
by the edge. A node number is a positive integer less than or equal to n. The last one integer represents
destroying cost. Destroying cost is a non-negative integer less than or equal to 10,000. The next t lines
contain a distinct list of integers one in each line, and represent the list of nodes with bases. The input
ends with a line containing three zeros, which should not be processed.

Output

For each test case, print its case number and the minimum destroying cost to split the tree with the case
number.

Sample Input

2 2 1

1 2 1

1

2

4 3 2

1 2 1

1 3 2

1 4 3

2

3

4

0 0 0

Output for the Sample Input

Case 1: 1

Case 2: 3

Problem B: AYBABTU Page 6 of 19

Problem C
Billiards Sorting

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 7 sec, Memory Limit: 64 MB

Rotation is one of several popular pocket billiards games. It uses 15 balls numbered from 1 to 15, and set
them up as illustrated in the following figure at the beginning of a game. (Note: the ball order is modified
from real-world Rotation rules for simplicity of the problem.)

[1]

[2][3]

[4][5][6]

[7][8][9][10]

[11][12][13][14][15]

You are an engineer developing an automatic billiards machine. For the first step you had to build a
machine that sets up the initial condition. This project went well, and finally made up a machine that
could arrange the balls in the triangular shape. However, unfortunately, it could not place the balls in the
correct order.

So now you are trying to build another machine that fixes the order of balls by swapping them. To cut off

the cost, it is only allowed to swap the ball #1 with its neighboring balls that are not in the same row. For
example, in the case below, only the following pairs can be swapped: (1,2), (1,3), (1,8), and (1,9).

[5]

[2][3]

[4][1][6]

[7][8][9][10]

[11][12][13][14][15]

Write a program that calculates the minimum number of swaps required.

Input

The first line of each test case has an integer N (1 ≤ N ≤ 5), which is the number of the rows.

The following N lines describe how the balls are arranged by the first machine; the i-th of them consists
of exactly i integers, which are the ball numbers.

The input terminates when N = 0. Your program must not output for this case.

Output

For each test case, print its case number and the minimum number of swaps.

You can assume that any arrangement can be fixed by not more than 45 swaps.

Problem C: Billiards Sorting Page 7 of 19

Sample Input

2

3

2 1

4

9

2 4

8 5 3

7 1 6 10

0

Output for the Sample Input

Case 1: 1

Case 2: 13

Problem C: Billiards Sorting Page 8 of 19

Problem D
Digit

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 2 sec, Memory Limit: 64 MB

For a positive integer a, let S (a) be the sum of the digits in base l. Also let L(a) be the minimum k such
that S k(a) is less than or equal to l − 1. Find the minimum a such that L(a) = N for a given N, and print
a modulo m.

Input

The input contains several test cases, followed by a line containing “0 0 0”. Each test case is given by a
line with three integers N, m, l (0 ≤ N ≤ 105, 1 ≤ m ≤ 109, 2 ≤ l ≤ 109).

Output

For each test case, print its case number and the minimum a modulo m as described above.

Sample Input

0 1000 10

1 1000 10

0 0 0

Output for the Sample Input

Case 1: 1

Case 2: 10

Problem D: Digit Page 9 of 19

Problem E
Dungeon Creation

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 3 sec, Memory Limit: 64 MB

The king demon is waiting in his dungeon to defeat a brave man. His dungeon consists of H ×W grids.
Each cell is connected to four (i.e. north, south, east and west) neighboring cells and some cells are
occupied by obstacles.

To attack the brave man, the king demon created and sent a servant that walks around in the dungeon.
However, soon the king demon found that the servant does not work as he wants. The servant is too
dumb. If the dungeon had cyclic path, it might keep walking along the cycle forever.

In order to make sure that the servant eventually find the brave man, the king demon decided to eliminate
all cycles by building walls between cells. At the same time, he must be careful so that there is at least
one path between any two cells not occupied by obstacles.

Your task is to write a program that computes in how many ways the kind demon can build walls.

Input

The first line of each test case has two integers H and W (1 ≤ H ≤ 500, 1 ≤ W ≤ 15), which are the
height and the width of the dungeon. Following H lines consist of exactly W letters each of which is ‘.’
(there is no obstacle on the cell) or ‘#’ (there is an obstacle). You may assume that there is at least one
cell that does not have an obstacle.

The input terminates when H = 0 and W = 0. Your program must not output for this case.

Output

For each test case, print its case number and the number of ways that walls can be built in one line. Since
the answer can be very big, output in modulo 1,000,000,007.

Sample Input

2 2

..

..

3 3

...

...

..#

0 0

Output for the Sample Input

Case 1: 4

Case 2: 56

Problem E: Dungeon Creation Page 10 of 19

Problem F
Longest Lane

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 1 sec, Memory Limit: 64 MB

Mr. KM, the mayor of KM city, decided to build a new elementary school. The site for the school has an
awkward polygonal shape, which caused several problems. The most serious problem was that there was
not enough space for a short distance racetrack. Your task is to help Mr. KM to calculate the maximum
possible length for the racetrack that can be built in the site. The track can be considered as a straight
line segment whose width can be ignored. The boundary of the site has a simple polygonal shape without
self-intersection, and the track can touch the boundary. Note that the boundary might not be convex.

Input

The input consists of multiple test cases, followed by a line containing “0”. Each test case has the
following format. The first line contains an integer N (3 ≤ N ≤ 100). Each of the following N lines
contains two integers xi and yi (−1,000 ≤ xi, yi ≤ 1,000), which describe the coordinates of a vertex of
the polygonal border of the site, in counterclockwise order.

Output

For each test case, print its case number and the maximum possible length of the track in a line. The
answer should be given as a floating point number with an absolute error of at most 10−6.

Sample Input

4

0 0

10 0

10 10

0 10

3

0 0

1 0

0 1

0

Output for the Sample Input

Case 1: 14.142135624

Case 2: 1.41421356

Problem F: Longest Lane Page 11 of 19

Problem G
PLAY in BASIC

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 5 sec, Memory Limit: 64 MB

One sunny day, Dick T. Mustang found an ancient personal computer in the closet. He brought it back to
his room and turned it on with a sense of nostalgia, seeing a message coming on the screen:

READY?

Yes. BASIC.

BASIC is a programming language designed for beginners, and was widely used from 1980‘s to 1990’s.
There have been quite a few BASIC dialects. Some of them provide the PLAY statement, which plays
music when called with a string of a musical score written in Music Macro Language (MML). Dick found
this statement is available on his computer and accepts the following commands in MML:

Notes: Cn, C+n, C-n, Dn, D+n, D-n, En,...,... (n = 1,2,4,8,16,32,64,128 + dots) Each note command
consists of a musical note followed by a duration specifier.

Each musical note is one of the seven basic notes: ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘A’, and ‘B’. It can be
followed by either ‘+’ (indicating a sharp) or ‘-’ (a flat). The notes ‘C’ through ‘B’ form an octave
as depicted in the figure below. The octave for each command is determined by the current octave,
which is set by the octave commands as described later. It is not possible to play the note ‘C-’ of
the lowest octave (1) nor the note ‘B+’ of the highest octave (8).

Each duration specifier is basically one of the following numbers: ‘1’, ‘2’, ‘4’, ‘8’, ‘16’, ‘32’,
‘64’, and ‘128’, where ‘1’ denotes a whole note, ‘2’ a half note, ‘4’ a quarter note, ‘8’ an eighth
note, and so on. This specifier is optional; when omitted, the duration will be the default one set
by the L command (which is described below). In addition, duration specifiers can contain dots
next to the numbers. A dot adds the half duration of the basic note. For example, ‘4.’ denotes the
duration of ‘4’ (a quarter) plus ‘8’ (an eighth, i.e. half of a quarter), or as 1.5 times long as ‘4’.
It is possible that a single note has more than one dot, where each extra dot extends the duration
by half of the previous one. For example, ‘4..’ denotes the duration of ‘4’ plus ‘8’ plus ‘16’, ‘4...’
denotes the duration of ‘4’ plus ‘8’ plus ‘16’ plus ‘32’, and so on. The duration extended by dots
cannot be shorter than that of ‘128’ due to limitation of Dick‘s computer; therefore neither ’128.‘
nor ’32...‘ will be accepted. The dots specified without the numbers extend the default duration.
For example, ’C.‘ is equivalent to ’C4.‘ when the default duration is ’4‘. Note that ’C4C8‘ and
’C4.’ are unequivalent; the former contains two distinct notes, while the latter just one note.

Rest: Rn (n = 1,2,4,8,16,32,64,128 + dots) The R command rests for the specified duration. The dura-
tion should be specified in the same way as the note commands, and it can be omitted, too. Note
that ‘R4R8’ and ‘R4.’ are equivalent, unlike ‘C4C8’ and ‘C4.’, since the both rest for the same
duration of ‘4’ plus ‘8’.

Octave: On (n = 1–8), <, > The O command sets the current octave to the specified number. ‘>’ raises
one octave up, and ‘<’ drops one down. It is not allowed to set the octave beyond the range from
1 to 8 by these commands. The octave is initially set to 4.

Default duration: Ln (n = 1,2,4,8,16,32,64,128) The L command sets the default duration. The dura-
tion should be specified in the same way as the note commands, but cannot be omitted nor followed
by dots. The default duration is initially set to 4.

Volume: Vn (n = 1–255) The V command sets the current volume. Larger is louder. The volume is
initially set to 100.

Problem G: PLAY in BASIC Page 12 of 19

As an amateur composer, Dick decided to play his pieces of music by the PLAY statement. He managed
to write a program with a long MML sequence, and attempted to run the program to play his music —
but unfortunately he encountered an unexpected error: the MML sequence was too long to be handled in
his computer’s small memory!

Since he didn’t want to give up all the efforts he had made to use the PLAY statement, he decided
immediately to make the MML sequence shorter so that it fits in the small memory. It was too hard for
him, though. So he asked you to write a program that, for each given MML sequence, prints the shortest
MML sequence (i.e. MML sequence containing minimum number of characters) that expresses the same
music as the given one. Note that the final values of octave, volume, and default duration can be differrent
from the original MML sequence.

Input

The input consists of multiple data sets. Each data set is given by a single line that contains an MML
sequence up to 100,000 characters. All sequences only contain the commands described above. Note
that each sequence contains at least one note, and there is no rest before the first note and after the last
note.

The end of input is indicated by a line that only contains “*”. This is not part of any data sets and hence
should not be processed.

Output

For each test case, print its case number and the shortest MML sequence on a line.

If there are multiple solutions, print any of them.

Sample Input

C4C4G4G4A4A4G2F4F4E4E4D4D4C2

O4C4.C8F4.F8G8F8E8D8C2

B-8>C8<B-8V40R2R..R8.V100EV50L1CG

*

Problem G: PLAY in BASIC Page 13 of 19

Output for the Sample Input

Case 1: CCGGAAG2FFEEDDC2

Case 2: C.C8F.L8FGFEDC2

Case 3: L8B-B+B-RL1RE4V50CG

Problem G: PLAY in BASIC Page 14 of 19

Problem H
Skyland

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 5 sec, Memory Limit: 64 MB

Somewhere in the sky, KM kingdom built n floating islands by their highly developed technology. The
islands are numbered from 1 to n.

The king of the country, Kita masa, can choose any non-negative real number as the altitude for each
island, as long as the sum of the altitudes is greater than or equals to H. For floating the island i to
the altitude hi, it costs bihi. Besides, it costs |hi − h j|ci, j for each pair of islands i and j since there are
communications between these islands.

Recently, energy prices are rising, so the king, Kita masa, wants to minimize the sum of the costs. The
king ordered you, a court programmer, to write a program that finds the altitudes of the floating islands
that minimize the cost.

Input

The input contains several test cases. Each test case starts with a line containing two integers n (1 ≤ n ≤
100) and H (0 ≤ H ≤ 1,000), separated by a single space. The next line contains n integers b1, b2,..., bn

(0 ≤ bi ≤ 1,000). Each of the next n lines contains n integers ci, j (0 ≤ ci, j ≤ 1,000). You may assume
ci,i = 0 and ci, j = c j,i.

The last test case is followed by a line containing two zeros.

Output

For each test case, print its case number. Then print a line containing a space-separated list of the altitudes
of the islands that minimizes the sum of the costs. If there are several possible solutions, print any of
them. Your answer will be accepted if the altitude of each island is non-negative, sum of the altitudes is
greater than (1 − 10−9)H, and the cost calculated from your answer has an absolute or relative error less
than 10−9 from the optimal solution.

Follow the format of the sample output.

Sample Input

2 1

1 3

0 1

1 0

3 3

1 2 4

0 2 0

2 0 1

0 1 0

0 0

Problem H: Skyland Page 15 of 19

Output for the Sample Input

Case 1:

0.75 0.25

Case 2:

1.5 1.5 0.0

Problem H: Skyland Page 16 of 19

Problem I
Three-way Branch

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 7 sec, Memory Limit: 64 MB

There is a grid that consists of W ×H cells. The upper-left-most cell is (1, 1). You are standing on the cell
of (1, 1) and you are going to move to cell of (W,H). You can only move to adjacent lower-left, lower or
lower-right cells.

There are obstructions on several cells. You can not move to it. You cannot move out the grid, either.
Write a program that outputs the number of ways to reach (W,H) modulo 1,000,000,009. You can assume
that there is no obstruction at (1, 1).

Input

The first line contains three integers, the width W, the height H, and the number of obstructions N.
(1 ≤ W ≤ 75, 2 ≤ H ≤ 1018, 0 ≤ N ≤ 30) Each of following N lines contains 2 integers, denoting the
position of an obstruction (xi, yi).

The last test case is followed by a line containing three zeros.

Output

For each test case, print its case number and the number of ways to reach (W,H) modulo 1,000,000,009.

Sample Input

2 4 1

2 1

2 2 1

2 2

0 0 0

Output for the Sample Input

Case 1: 4

Case 2: 0

Problem I: Three-way Branch Page 17 of 19

Problem J
Tree Allocation

JAG Spring Contest 2012, AOJ
15 Apr 2012Time Limit: 10 sec, Memory Limit: 64 MB

A tree is one of the most popular data structures in computer science. Tree itself is very elegant, but it is
incompatible with current computer architecture. In the current architecture, memory can be regarded as
a one-dimensional array. Since a tree is not a one-dimensional structure, cache efficiency may come into
question when we allocate a tree on memory. We can access the data faster if it is contained in cache. Let
us consider the allocation of nodes of a tree which achieves high cache performance.

We define the cost of allocation for a tree as follows. For simplicity, we regard memory to be separated
to blocks each can store at most B nodes of a tree. When we access data in a block, all data in the block
are stored in cache and access request to data in the block will be faster. The cost of an access to node u
after node v is 0 if u and v are in same block, and 1 otherwise. Initially, cache has no data and the cost
of an access to a node is always 1. The cost of the path v1, v2,..., vn is sum of the cost when we access
the nodes v1, v2,..., vn in this order. For a tree, we define the cost of allocation as a maximum cost of the
paths from root node to each terminal node.

The figures below show examples of allocation when B = 4 and node 1 is the root node (it corresponds to
the tree described in the third sample input). Each frame represents a block. The left figure is an example
of allocation whose cost is 3. It is not optimal, because the right example achieves the optimal allocation
cost 2.

Given a tree, for each node i in the tree, calculate the minimum cost of allocation when the node i is the
root node.

Input

The input contains several test cases. Each test case starts with a line containing two integers N (1 ≤
N ≤ 100,000) and B (1 ≤ B ≤ N), separated by a single space. Each of the next N − 1 lines contains an
integer. The i-th integer pi (1 ≤ pi ≤ i) denotes that the node i + 1 and the node pi are connected. The
nodes are numbered from 1 to N.

The last test case is followed by a line containing two zeros.

Problem J: Tree Allocation Page 18 of 19

Output

For each test case, print its case number. Then print N lines. The i-th line should contain an integer which
denotes the minimum cost of allocation of the given tree when node i is the root node.

Follow the format of the sample output.

Sample Input

3 1

1

2

3 2

1

1

10 4

1

1

2

3

3

4

4

4

5

0 0

Output for the Sample Input

Case 1:

3

2

3

Case 2:

2

2

2

Case 3:

2

2

2

2

2

2

2

2

2

3

Problem J: Tree Allocation Page 19 of 19

