
Problem Set for JAG Practice Contest 2011

Japanese Alumni Group

Contest Held on 6 Nov 2011

Status of Problems

All problems were newly created by the members of Japanese Alumni Group.

This problem set was typeset by LATEX 2ε with a style file made by a member of JAG from scratch, so
that the statement looks like those used in ACM-ICPC Regional Contest held in Japan.

Terms of Use

You may use all problems in any form, entirely or in part, with or without modification, for any purposes,
without prior or posterior consent to Japanese Alumni Group, provided that your use is made solely at
your own risk.

THE PROBLEM SET IS PROVIDED “AS-IS”, WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTY. IN NO EVENT SHALL JAPANESE ALUMNI GROUP, THE MEMBERS OF THE GROUP,
OR THE CONTRIBUTORS TO THE GROUP BE LIABLE FOR ANY DAMAGE ARISING IN ANY
WAY OUT OF THE USE OF THE PROBLEM SET, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem A

Infinity Maze
Input: A.txt

Time Limit: 30 seconds

Dr. Fukuoka has placed a simple robot in a two-dimensional maze. It moves within the maze
and never goes out of the maze as there is no exit.

The maze is made up of H ×W grid cells as depicted below. The upper side of the maze faces
north. Consequently, the right, lower and left sides face east, south and west respectively. Each
cell is either empty or wall and has the coordinates of (i, j) where the north-west corner has
(1, 1). The row i goes up toward the south and the column j toward the east.

W
es

t

North

(1, 1) (1, 2) · · · (1,W)

...
...

...

(H, 1) (H, 2) · · · (H,W)

South

E
as

t

The robot moves on empty cells and faces north, east, south or west. It goes forward when there
is an empty cell in front, and rotates 90 degrees to the right when it comes in front of a wall cell
or on the edge of the maze. It cannot enter the wall cells. It stops right after moving forward
by L cells.

Your mission is, given the initial position and direction of the robot and the number of steps,
to write a program to calculate the final position and direction of the robot.

Input

The input is a sequence of datasets. Each dataset is formatted as follows.

H W L

1

c1,1c1,2 . . . c1,W
...

cH,1cH,2 . . . cH,W

The first line of a dataset contains three integers H, W and L(1 ≤ H,W ≤ 100, 1 ≤ L ≤ 1018).

Each of the following H lines contains exactly W characters. In the i-th line, the j-th character
ci,j represents a cell at (i, j) of the maze. “.” denotes an empty cell. “#” denotes a wall cell. “N”,
“E”, “S”, “W” denote a robot on an empty cell facing north, east, south and west respectively;
it indicates the initial position and direction of the robot.

You can assume that there is at least one empty cell adjacent to the initial position of the robot.

The end of input is indicated by a line with three zeros. This line is not part of any dataset.

Output

For each dataset, output in a line the final row, column and direction of the robot, separated
by a single space. The direction should be one of the following: “N” (north), “E” (east), “S”
(south) and “W” (west).

No extra spaces or characters are allowed.

Sample Input

3 3 10

E..

.#.

...

5 5 19

####.

.....

.#S#.

...#.

#.##.

5 5 6

#.#..

#....

##.#.

#..S.

#....

5 4 35

..##

....

.##.

2

.#S.

...#

0 0 0

Output for the Sample Input

1 3 E

4 5 S

4 4 E

1 1 N

3

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem B

Butterfly
Input: B.txt

Time Limit: 30 seconds

Claire is a man-eater. She’s a real man-eater. She’s going around with dozens of guys. She’s
dating all the time. And one day she found some conflicts in her date schedule. D’oh!

So she needs to pick some dates and give the others up. The dates are set by hours like 13:00
to 15:00. She may have more than one date with a guy. For example, she can have dates with
Adam from 10:00 to 12:00 and from 14:00 to 16:00 and with Bob from 12:00 to 13:00 and from
18:00 to 20:00. She can have these dates as long as there is no overlap of time. Time of traveling,
time of make-up, trouble from love triangles, and the likes are not of her concern. Thus she can
keep all the dates with Adam and Bob in the previous example. All dates are set between 6:00
and 22:00 on the same day.

She wants to get the maximum amount of satisfaction in total. Each guy gives her some
satisfaction if he has all scheduled dates. Let’s say, for example, Adam’s satisfaction is 100 and
Bob’s satisfaction is 200. Then, since she can make it with both guys, she can get 300 in total.

Your task is to write a program to satisfy her demand. Then she could spend a few hours with
you... if you really want.

Input

The input consists of a sequence of datasets. Each dataset has the following format:

N

Guy1
...

GuyN

The first line of the input contains an integer N (1 ≤ N ≤ 100), the number of guys. Then
there come the descriptions of guys. Each description is given in this format:

M L

S1 E1
...

SM EM

4

The first line contains two integers Mi (1 ≤ Mi ≤ 16) and Li (1 ≤ Li ≤ 100,000,000), the
number of dates set for the guy and the satisfaction she would get from him respectively. Then
M lines follow. The i-th line contains two integers Si and Ei (6 ≤ Si < Ei ≤ 22), the starting
and ending time of the i-th date.

The end of input is indicated by N = 0.

Output

For each dataset, output in a line the maximum amount of satisfaction she can get.

Sample Input

2

2 100

10 12

14 16

2 200

12 13

18 20

4

1 100

6 22

1 1000

6 22

1 10000

6 22

1 100000

6 22

16

1 100000000

6 7

1 100000000

7 8

1 100000000

8 9

1 100000000

9 10

1 100000000

10 11

1 100000000

11 12

1 100000000

12 13

1 100000000

5

13 14

1 100000000

14 15

1 100000000

15 16

1 100000000

16 17

1 100000000

17 18

1 100000000

18 19

1 100000000

19 20

1 100000000

20 21

1 100000000

21 22

0

Output for the Sample Input

300

100000

1600000000

6

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem C

Chinese Classics
Input: C.txt

Time Limit: 30 seconds

Taro, a junior high school student, is working on his homework. Today’s homework is to read
Chinese classic texts.

As you know, Japanese language shares the (mostly) same Chinese characters but the order of
words is a bit different. Therefore the notation called “returning marks” was invented in order
to read Chinese classic texts in the order similar to Japanese language.

There are two major types of returning marks: ‘Re’ mark and jump marks. Also there are a
couple of jump marks such as one-two-three marks, top-middle-bottom marks. The marks are
attached to letters to describe the reading order of each letter in the Chinese classic text. Figure
1 is an example of a Chinese classic text annotated with returning marks, which are the small
letters at the bottom-left of the big Chinese letters.

Figure 1: a Chinese classic text

Taro generalized the concept of jump marks, and summarized the rules to read Chinese classic
texts with returning marks as below. Your task is to help Taro by writing a program that
interprets Chinese classic texts with returning marks following his rules, and outputs the order
of reading of each letter.

When two (or more) rules are applicable in each step, the latter in the list below is applied first,
then the former.

1. Basically letters are read downwards from top to bottom, i.e. the first letter should be
read (or skipped) first, and after the i-th letter is read or skipped, (i + 1)-th letter is read
next.

2. Each jump mark has a type (represented with a string consisting of lower-case letters) and

7

a number (represented with a positive integer). A letter with a jump mark whose number
is 2 or larger must be skipped.

3. When the i-th letter with a jump mark of type t, number n is read, and when there exists
an unread letter L at position less than i that has a jump mark of type t, number n + 1,
then L must be read next. If there is no such letter L, the (k + 1)-th letter is read, where
k is the index of the most recently read letter with a jump mark of type t, number 1.

4. A letter with a ‘Re’ mark must be skipped.

5. When the i-th letter is read and (i − 1)-th letter has a ‘Re’ mark, then (i − 1)-th letter
must be read next.

6. No letter may be read twice or more. Once a letter is read, the letter must be skipped in
the subsequent steps.

7. If no letter can be read next, finish reading.

Let’s see the first case of the sample input. We begin reading with the first letter because of the
rule 1. However, since the first letter has a jump mark ‘onetwo2’, we must follow the rule 2 and
skip the letter. Therefore the second letter, which has no returning mark, will be read first.

Then the third letter will be read. The third letter has a jump mark ‘onetwo1’, so we must
follow rule 3 and read a letter with a jump mark ‘onetwo2’ next, if exists. The first letter has
the exact jump mark, so it will be read third. Similarly, the fifth letter is read fourth, and then
the sixth letter is read.

Although we have two letters which have the same jump mark ‘onetwo2’, we must not take into
account the first letter, which has already been read, and must read the fourth letter. Now we
have read all six letters and no letter can be read next, so we finish reading. We have read the
second, third, first, fifth, sixth, and fourth letter in this order, so the output is 2 3 1 5 6 4.

Input

The input contains multiple datasets. Each dataset is given in the following format:

N

mark1
...

markN

N , a positive integer (1 ≤ N ≤ 10,000), means the number of letters in a Chinese classic text.
mark i denotes returning marks attached to the i-th letter.

A ‘Re’ mark is represented by a single letter, namely, ‘v’ (quotes for clarity). The description of
a jump mark is the simple concatenation of its type, specified by one or more lowercase letter,

8

and a positive integer. Note that each letter has at most one jump mark and at most one ’Re’
mark. When the same letter has both types of returning marks, the description of the jump
mark comes first, followed by ‘v’ for the ‘Re’ mark. You can assume this happens only on the
jump marks with the number 1.

If the i-th letter has no returning mark, mark i is ‘-’ (quotes for clarity). The length of mark i
never exceeds 20.

You may assume that input is well-formed, that is, there is exactly one reading order that follows
the rules above. And in the ordering, every letter is read exactly once.

You may also assume that the N -th letter does not have ‘Re’ mark.

The input ends when N = 0. Your program must not output anything for this case.

Output

For each dataset, you should output N lines. The first line should contain the index of the letter
which is to be read first, the second line for the letter which is to be read second, and so on. All
the indices are 1-based.

Sample Input

6

onetwo2

-

onetwo1

onetwo2

-

onetwo1

7

v

topbottom2

onetwo2

-

onetwo1

topbottom1

-

6

baz2

foo2

baz1v

bar2

foo1

bar1

0

9

Output for the Sample Input

2

3

1

5

6

4

4

5

3

6

2

1

7

5

2

6

4

3

1

10

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem D

Revenge of Champernowne Constant
Input: D.txt

Time Limit: 30 seconds

Champernowne constant is an irrational number. Its decimal representation starts with “0.”,
followed by concatenation of all positive integers in the increasing order.

You will be given a sequence S which consists of decimal digits. Your task is to write a program
which computes the position of the first occurrence of S in Champernowne constant after the
decimal point.

Input

The input has multiple test cases. Each line of the input has one digit sequence. The input is
terminated by a line consisting only of #.

It is guaranteed that each sequence has at least one digit and its length is less than or equal to
100.

Output

For each sequence, output one decimal integer described above. You can assume each output
value is less than 1016.

Sample Input

45678

67891011

21

314159265358979

#

Output for the Sample Input

4

6

15

2012778692735799

11

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem E

Full Text Search
Input: E.txt

Time Limit: 30 seconds

Mr. Don is an administrator of a famous quiz website named QMACloneClone. The users there
can submit their own questions to the system as well as search for question texts with arbitrary
queries. This search system employs bi-gram search method.

The bi-gram search method introduces two phases, namely preprocessing and search:

Preprocessing Precompute the set of all the substrings of one or two characters long for each
question text.

Search Compute the set for the query string in the same way. Then find the question texts
whose precomputed sets completely contain the set constructed from the query.

Everything looked fine for a while after the feature was released. However, one of the users
found an issue: the search results occasionally contained questions that did not include the
query string as-is. Those questions are not likely what the users want. So Mr. Don has started
to dig into the issue and asked you for help. For each given search query, your task is to find
the length of the shortest question text picked up by the bi-gram method but not containing
the query text as its substring.

Input

The input consists of multiple datasets. A dataset is given as a search query on each line. The
input ends with a line containing only a hash sign (“#”), which should not be processed.

A search query consists of no more than 1,000 and non-empty lowercase and/or uppercase letters.
The question texts and queries are case-sensitive.

Output

For each search query, print the minimum possible length of a question text causing the issue.
If there is no such question text, print “No Result” in one line (quotes only to clarify).

Sample Input

a

12

QMAClone

acmicpc

abcdefgha

abcdefgdhbi

abcbcd

#

Output for the Sample Input

No Results

9

7

9

12

6

Note

Let’s consider the situation that one question text is “CloneQMAC”. In this situation, the set
computed in the preprocessing phase is {“C”, “Cl”, “l”, “lo”, “o”, “on”, “n”, “ne”, “e”, “eQ”,
“Q”, “QM”, “M”, “MA”, “A”, “AC”}.

In the testcase 2, our input text (search query) is “QMAClone”. Thus the set computed by the
program in the search phase is {“Q”, “QM”, “M”, “MA”, “A”, “AC”, “C”, “Cl”, “l”, “lo”, “o”,
“on”, “n”, “ne”, “e”}.

Since the first set contains all the elements in the second set, the question text “CloneQMAC”
is picked up by the program when the search query is “QMAClone” although the text “CloneQ-
MAC” itself does not contain the question text “QMAClone”. In addition, we can prove that
there’s no such text of the length less than 9, thus, the expected output for this search query is
9.

13

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem F

Mysterious Maze
Input: F.txt

Time Limit: 30 seconds

A robot in a two-dimensional maze again. The maze has an entrance and an exit this time,
though.

Just as in the previous problem, the maze is made up of H ×W grid cells, its upper side faces
north, and each cell is either empty or wall. Unlike the previous, on the other hand, one of the
empty cells is connected to the entrance and another to the exit.

The robot is rather complex — there is some control, but not full. It is associated with a
controller that has two buttons, namely forward and turn. The forward button moves the robot
forward to the next cell, if possible. The robot can not move into a wall nor outside the maze.
The turn button turns the robot as programmed. Here the program is a finite sequence of N
commands, each of which is either ‘L’ (indicating a left turn) or ‘R’ (a right turn). The first
turn follows the first command; the second turn follows the second command; similar for the
following turns. The turn button stops working once the commands are exhausted; the forward
button still works in such a case though. The robot always turns by 90 degrees at once.

The robot is initially put on the entrance cell, directed to the north. Your mission is to determine
whether it can reach the exit cell if controlled properly.

Input

The input is a sequence of datasets. Each dataset is formatted as follows.

H W N

s1 . . . sN
c1,1c1,2 . . . c1,W

...

cH,1cH,2 . . . cH,W

The first line of a dataset contains three integers H, W and N (1 ≤ H,W ≤ 1,000, 1 ≤ N ≤
1,000,000).

The second line contains a program of N commands.

Each of the following H lines contains exactly W characters. Each of these characters represents
a cell of the maze. “.” indicates empty, “#” indicates a wall, “S” indicates an entrance, and

14

“G” indicates an exit. There is exactly one entrance cell and one exit cell.

The end of input is indicated by a line with three zeros.

Output

For each dataset, output whether the robot can reach the exit in a line: “Yes” if it can or “No”
otherwise (without quotes).

Sample Input

2 2 1

L

G.

#S

2 2 2

RR

G.

.S

3 3 6

LLLLLL

G#.

...

.#S

0 0 0

Output for the Sample Input

Yes

No

Yes

15

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem G

Number Sorting
Input: G.txt

Time Limit: 30 seconds

Consider sets of natural numbers. Some sets can be sorted in the same order numerically
and lexicographically. {2, 27, 3125, 9000} is one example of such sets; {2, 27, 243} is not since
lexicographic sorting would yield {2, 243, 27}.

Your task is to write a program that, for the set of integers in a given range [A,B] (i.e. between
A and B inclusive), counts the number of non-empty subsets satisfying the above property. Since
the resulting number is expected to be very huge, your program should output the number in
modulo P given as the input.

Input

The input consists of multiple datasets. Each dataset consists of a line with three integers A,
B, and P separated by a space. These numbers satisfy the following conditions: 1 ≤ A ≤
1,000,000,000, 0 ≤ B −A < 100,000, 1 ≤ P ≤ 1,000,000,000.

The end of input is indicated by a line with three zeros.

Output

For each dataset, output the number of the subsets in modulo P .

Sample Input

1 10 1000

1 100000 1000000000

999999999 1000099998 1000000000

0 0 0

Output for the Sample Input

513

899507743

941554688

16

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem H

Sky Jump
Input: H.txt

Time Limit: 30 seconds

Dr. Kay Em, a genius scientist, developed a new missile named “Ikan-no-i.” This missile
has N jet engines. When the i-th engine is ignited, the missile’s velocity changes to (vx i, vy i)
immediately.

Your task is to determine whether the missile can reach the given target point (X,Y). The
missile can be considered as a mass point in a two-dimensional plane with the y-axis pointing
up, affected by the gravity of 9.8 downward (i.e. the negative y-direction) and initially set at
the origin (0, 0). The engines can be ignited at any time in any order. Still, note that at least
one of them needs to be ignited to get the missile launched.

Input

The input consists of multiple datasets. Each dataset has the following format.

N

vx 1 vy1
vx 2 vy2

...

vxN vyN
X Y

All values are integers and meet the following constraints: 1 ≤ N ≤ 1,000, 0 < vx i ≤ 1,000,
−1,000 ≤ vy i ≤ 1,000, 0 < X ≤ 1,000, −1,000 ≤ Y ≤ 1,000.

The end of input is indicated by a line with a single zero.

Output

For each dataset, output whether the missile can reach the target point in a line: “Yes” if it
can, “No” otherwise.

Sample Input

1

17

1 1

10 -480

2

6 7

5 5

4 1

3

10 5

4 4

8 4

2 0

0

Output for the Sample Input

Yes

Yes

No

18

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem I

Mobile Network
Input: I.txt

Time Limit: 30 seconds

The traffic on the Internet is increasing these days due to smartphones. The wireless carriers
have to enhance their network infrastructure.

The network of a wireless carrier consists of a number of base stations and lines. Each line
connects two base stations bi-directionally. The bandwidth of a line increases every year and is
given by a polynomial f(x) of the year x.

Your task is, given the network structure, to write a program to calculate the maximal bandwidth
between the 1-st and N -th base stations as a polynomial of x.

Input

The input consists of multiple datasets. Each dataset has the following format:

N M

u1 v1 p1
...

uM vM pM

The first line of each dataset contains two integers N (2 ≤ N ≤ 50) and M (0 ≤ M ≤ 500),
which indicates the number of base stations and lines respectively. The following M lines
describe the network structure. The i-th of them corresponds to the i-th network line and
contains two integers ui and vi and a polynomial pi. ui and vi indicate the indices of base
stations (1 ≤ ui, vi ≤ N); pi indicates the network bandwidth.

Each polynomial has the form of:

aLx
L + aL−1x

L−1 + ... + a2x
2 + a1x + a0

where L (0 ≤ L ≤ 50) is the degree and ai’s (0 ≤ i ≤ L, 0 ≤ ai ≤ 100) are the coefficients. In
the input,

• each term aix
i (for i ≥ 2) is represented as 〈ai〉x^〈i〉;

19

• the linear term (a1x) is represented as 〈a1〉x;

• the constant (a0) is represented just by digits;

• these terms are given in the strictly decreasing order of the degrees and connected by a
plus sign (“+”);

• just like the standard notations, the 〈ai〉 is omitted if ai = 1 for non-constant terms;

• similarly, the entire term is omitted if ai = 0 for any terms; and

• the polynomial representations contain no space or characters other than digits, “x”, “^”,
and “+”.

For example, 2x2 + 3x + 5 is represented as 2x^2+3x+5; 2x3 + x is represented as 2x^3+x,
not 2x^3+0x^2+1x+0 or the like. No polynomial is a constant zero, i.e. the one with all the
coefficients being zero.

The end of input is indicated by a line with two zeros. This line is not part of any dataset.

Output

For each dataset, print the maximal bandwidth as a polynomial of x. The polynomial should
be represented in the same way as the input format except that a constant zero is possible and
should be represented by “0” (without quotes).

Sample Input

3 3

1 2 x+2

2 3 2x+1

3 1 x+1

2 0

3 2

1 2 x

2 3 2

4 3

1 2 x^3+2x^2+3x+4

2 3 x^2+2x+3

3 4 x+2

0 0

Output for the Sample Input

2x+3

0

20

2

x+2

21

ACM International Collegiate Programming Contest
JAG Practice Contest, Tokyo, 2011–11–6

Problem J

Blue Forest
Input: J.txt

Time Limit: 30 seconds

John is playing a famous console game named ‘Tales of Algorithmers.’ Now he is facing the last
dungeon called ‘Blue Forest.’ To find out the fastest path to run through the very complicated
dungeon, he tried to draw up the dungeon map.

The dungeon consists of several floors. Each floor can be described as a connected simple plane
graph. Vertices of the graph are identified by X-Y coordinate, and the length of an edge is
calculated by Euclidean distance. A vertex may be equipped with a one-way warp gate. If
John chooses to use the gate, it brings John to another vertex in a possibly different floor. The
distance between a warp gate and its destination is considered as 0.

One vertex has at most one warp gate, though some vertices might be the destination of multiple
warp gates.

He believed he made one map for each floor, however after drawing maps of all the floors, he
noticed that he might have made a few mistakes. He might have drawn the same floor several
times, and might have forgotten to mark some warp gates in the maps. However, he was sure
he marked all warp gates at least once. So if the maps of same floor are unified to one map, all
the warp gates must be described there. Luckily there are no floors which have the same shape
as the other floors, so if two (or more) maps can be unified, they must be the maps of the same
floor. Also, there is no floor which is circular symmetric (e.g. a regular triangle and a square).

Map A and map B can be unified if map B can be transformed to map A using only rotation
and parallel translation. Since some of the warp gates on maps might be missing, you should
not consider the existence of warp gates when checking unification. If it is possible to unify map
A and map B, a vertex on map A and the corresponding vertex on map B are considered as
‘identical’ vertices. In other words, you should treat warp gates on map B as those on map A
where the warp gates are located on the corresponding vertices on map A. Destinations of warp
gates should be treated similarly. After that you can forget map B. It is guaranteed that if both
map A and map B have warp gates which are on the identical vertices, the destinations of them
are also identical.

Remember, your task is to find the shortest path from the entrance to the exit of the dungeon,
using the unified maps.

Input

The input consists of multiple datasets. Each dataset is in the following format.

22

n

component1
component2

...

componentn
sl sn

dl dn

n is a positive integer indicating the number of maps. component i describes the i-th map in the
following format.

A

x1 y1
x2 y2

...

xA yA
B

s1 d1
s2 d2

...

sB dB
C

sn1 dl1 dn1

sn2 dl2 dn2
...

snC dlC dnC

A denotes the number of vertices in the map. Each of the following A lines contains two integers
xi and yi representing the coordinates of the i-th vertex in the 2-dimensional plane. B denotes
the number of the edges connecting the vertices in the map. Each of the following B lines
contains two integers representing the start and the end vertex of each edge. Vertices on the
same map are numbered from 1.

C denotes the number of warp gates. Each of the following C lines has three integers describing
a warp gate. The first integer is the vertex where the warp gate is located. The second and the
third integer are the indices of the map and the vertex representing the destination of the warp
gate, respectively. Similarly to vertices, maps are also numbered from 1.

After the description of all maps, two lines follow. The first line contains two integers sl and
dl , meaning that the entrance of the dungeon is located in the sl -th map, at the vertex dl . The
last line has two integers sn and dn, similarly describing the location of the exit.

23

The values in each dataset satisfy the following conditions:

• 1 ≤ n ≤ 50,

• 3 ≤ A ≤ 20,

• A− 1 ≤ B ≤ A(A− 1)/2,

• 0 ≤ C ≤ A, and

• −10,000 ≤ xi, yi ≤ 10,000.

Output

For each dataset, print the distance of the shortest path from the entrance to the exit. The
output should not contain an absolute error greater than 10−1. If there is no route, print -1.

Sample Input

2

5

0 0

10 0

20 0

30 0

30 10

4

1 2

2 3

3 4

4 5

2

1 2 4

3 2 2

5

-10 0

0 0

0 -10

0 -20

0 -30

4

1 2

2 3

3 4

4 5

24

1

4 1 3

1 1

2 1

4

3

4 3

0 0

5 0

2

1 2

2 3

0

3

0 0

3 4

0 5

2

1 2

1 3

1

2 3 4

4

0 13

0 0

13 0

13 13

4

1 2

1 4

2 3

2 4

0

4

5 12

0 0

-7 17

-12 5

4

1 2

2 3

2 4

4 3

0

1 1

25

4 1

4

3

0 0

2 0

0 4

2

1 2

1 3

0

3

0 0

-2 0

0 4

2

1 2

1 3

1

1 4 1

3

0 0

1 0

0 2

2

1 2

1 3

1

1 4 1

3

0 0

2 0

0 4

2

1 2

2 3

0

1 1

4 1

0

Output for the Sample Input

10.0000000000

41.3847763109

-1.000000000

26

