
Problem	A.	Window

Time	Limit:	2	sec
Memory	Limit:	512	MB

In	the	building	of	Jewelry	Art	Gallery	(JAG),	there	is	a	long	corridor	in	the	east-west	direction.	There	is	a
window	on	the	north	side	of	the	corridor,	and	 	windowpanes	are	attached	to	this	window.	The	width	of
each	windowpane	is	 ,	and	the	height	is	 .	The	 -th	windowpane	from	the	west	covers	the	horizontal
range	between	 	and	 	from	the	west	edge	of	the	window.

You	received	instructions	from	the	manager	of	JAG	about	how	to	slide	the	windowpanes.	These
instructions	consist	of	 	integers	 ,	and	 	is	satisfied	for	all	 .	For	the	 -th
windowpane,	if	 	is	odd,	you	have	to	slide	 -th	windowpane	to	the	east	by	 ,	otherwise,	you	have	to	slide	
-th	windowpane	to	the	west	by	 .
You	can	assume	that	the	windowpanes	will	not	collide	each	other	even	if	you	slide	windowpanes
according	to	the	instructions.	In	more	detail,	 	windowpanes	are	alternately	mounted	on	two	rails.	That	is,
the	 -th	windowpane	is	attached	to	the	inner	rail	of	the	building	if	 	is	odd,	otherwise,	it	is	attached	to	the
outer	rail	of	the	building.
Before	you	execute	the	instructions,	you	decide	to	obtain	the	area	where	the	window	is	open	after	the
instructions.

Input
The	input	consists	of	a	single	test	case	in	the	format	below.

	 	
	 	

The	first	line	consists	of	three	integers	 ,	 ,	and	 	(,).	It	is	guaranteed
that	 	is	even.	The	following	line	consists	of	 	integers	 ,	 ,	 	while	represent	the	instructions	from
the	manager	of	JAG.	 	represents	the	distance	to	slide	the	 -th	windowpane	().

Output
Print	the	area	where	the	window	is	open	after	the	instructions	in	one	line.

N

W H i

W × (i − 1) W × i

N x1,x2,… ,xN xi ≤ W i i

i i xi

i xi

N

i i

N H W
x1 ⋯ xN

N H W 1 ≤ N ≤ 100 1 ≤ H,W ≤ 100
N N x1 … xN

xi i 0 ≤ xi ≤ W

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

1	/	19

Examples

Input Output
4 3 3
1 1 2 3

9

8 10 18
2 12 16 14 18 4 17 16

370

6 2 2
0 2 2 2 2 0

8

4 1 4
3 3 2 2

6

8 7 15
5 0 9 14 0 4 4 15

189

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

2	/	19

Problem	B.	Tournament	Chart

Time	Limit:	2	sec
Memory	Limit:	512	MB

In	21XX,	an	annual	programming	contest,	Japan	Algorithmist	GrandPrix	(JAG)	has	become	one	of	the
most	popular	mind	sports	events.
JAG	is	conducted	as	a	knockout	tournament.	This	year,	 	contestants	will	compete	in	JAG.	A	tournament
chart	is	represented	as	a	string.	'[[a-b]-[c-d]]'	is	an	easy	example.	In	this	case,	there	are	4	contestants
named	a,	b,	c,	and	d,	and	all	matches	are	described	as	follows:

Match	1	is	the	match	between	a	and	b.
Match	2	is	the	match	between	c	and	d.
Match	3	is	the	match	between	[the	winner	of	match	1]	and	[the	winner	of	match	2].

More	precisely,	the	tournament	chart	satisfies	the	following	BNF:

<winner>	::=	<person>	|	"["	<winner>	"-"	<winner>	"]"
<person>	::=	"a"	|	"b"	|	"c"	|	...	|	"z"

You,	the	chairperson	of	JAG,	are	planning	to	announce	the	results	of	this	year's	JAG	competition.
However,	you	made	a	mistake	and	lost	the	results	of	all	the	matches.	Fortunately,	you	found	the
tournament	chart	that	was	printed	before	all	of	the	matches	of	the	tournament.	Of	course,	it	does	not
contains	results	at	all.	Therefore,	you	asked	every	contestant	for	the	number	of	wins	in	the	tournament,
and	got	 	pieces	of	information	in	the	form	of	"The	contestant	 	won	 	times".
Now,	your	job	is	to	determine	whether	all	of	these	replies	can	be	true.

Input
The	input	consists	of	a	single	test	case	in	the	format	below.

	

	

	represents	the	tournament	chart.	 	satisfies	the	above	BNF.	The	following	 	lines	represent	the
information	of	the	number	of	wins.	The	 -th	line	consists	of	a	lowercase	letter	 	and	a	non-negative
integer	 	(separated	by	a	space,	and	this	means	that	the	contestant	 	won	 	times.	Note	that	 	(

)	means	that	the	number	of	contestants	and	it	can	be	identified	by	string	 .	You	can	assume
that	each	letter	 	is	distinct.	It	is	guaranteed	that	 	contains	each	 	exactly	once	and	doesn't	contain	any
other	lowercase	letters.

Output
Print	'Yes'	in	one	line	if	replies	are	all	valid	for	the	tournament	chart.	Otherwise,	print	'No'	in	one	line.

N

N ai vi

S
a1 v1

⋮
aN vN

S S N

(i + 1) ai

vi vi ≤ 26) ai vi N

2 ≤ N ≤ 26 S

ai S ai

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

3	/	19

Examples

Input Output
[[m-y]-[a-o]]
o 0
a 1
y 2
m 0

Yes

[[r-i]-[m-e]]
e 0
r 1
i 1
m 2

No

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

4	/	19

Problem	C.	Prime-Factor	Prime

Time	Limit:	2	sec
Memory	Limit:	512	MB

A	positive	integer	is	called	a	"prime-factor	prime"	when	the	number	of	its	prime	factors	is	prime.	For
example,	 	is	a	prime-factor	prime	because	the	number	of	prime	factors	of	 	is	 ,	which	is
prime.	On	the	other	hand,	 	is	not	a	prime-factor	prime	because	the	number	of	prime	factors	of	

	is	 ,	which	is	a	composite	number.
In	this	problem,	you	are	given	an	integer	interval	 .	Your	task	is	to	write	a	program	which	counts	the
number	of	prime-factor	prime	numbers	in	the	interval,	i.e.	the	number	of	prime-factor	prime	numbers
between	 	and	 ,	inclusive.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

	

A	line	contains	two	integers	 	and	 	(),	which	presents	an	integer	interval	 .	You	can
assume	that	 .

Output
Print	the	number	of	prime-factor	prime	numbers	in	 .

Examples

Input Output
1 9 4

10 20 6

575 57577 36172

180 180 1

9900001 10000000 60997

999000001 1000000000 592955

Note
In	the	first	example,	there	are	4	prime-factor	primes	in	 :	 ,	 ,	 ,	and	 .

12 12 = 2 × 2 × 3 3
210

210 = 2 × 3 × 5 × 7 4

[l,r]

l r

l r

l r 1 ≤ l ≤ r ≤ 109 [l,r]
0 ≤ r − l < 1,000,000

[l,r]

[l,r] 4 6 8 9

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

5	/	19

Problem	D.	Revenge	of	the	Broken	Door

Time	Limit:	10	sec
Memory	Limit:	512	MB

The	JAG	Kingdom	consists	of	 	cities	and	 	bidirectional	roads.	The	 -th	road	 	connects	the
city	 	and	the	city	 	with	the	length	 .	One	day,	you,	a	citizen	of	the	JAG	Kingdom,	decided	to	go	to	the
city	 	from	the	city	 .	However,	you	know	that	one	of	the	roads	in	the	JAG	Kingdom	is	currently	under
construction	and	you	cannot	pass	the	road.	You	don't	know	which	road	it	is.	You	can	know	whether	a	road
is	under	construction	only	when	you	are	in	either	city	connected	by	the	road.
Your	task	is	to	minimize	the	total	length	of	the	route	in	the	worst	case.	You	don't	need	to	decide	a	route	in
advance	of	departure	and	you	can	choose	where	to	go	next	at	any	time.	If	you	cannot	reach	the	city	 	in
the	worst	case,	output	'-1'.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

	 	 	
	 	

	 	

The	first	line	contains	four	integers	 ,	 ,	 ,	and	 ,	where	 	is	the	number	of	the	cities	(
),	 	is	the	number	of	the	bidirectional	roads	(),	 	is	the	city	you	start

from	(),	and	 	is	the	city	you	want	to	reach	to	(,).	The	following	 	lines
represent	road	information:	the	 -th	line	of	the	 	lines	consists	of	three	integers	 ,	 ,	 ,	which	means
the	 -th	road	connects	the	cities	 	and	 	(,)	with	the	length	 	().	You
can	assume	that	all	the	pairs	of	the	cities	are	connected	if	no	road	is	under	construction.	That	is,	there	is	at
least	one	route	from	city	 	to	city	 	with	given	roads,	for	all	cities	 	and	 .	It	is	also	guaranteed	that	there
are	no	multiple-edges,	i.e.,	 	for	all	 .

Output
Output	the	minimum	total	length	of	the	route	in	the	worst	case.	If	you	cannot	reach	the	city	 	in	the	worst
case,	output	'-1'.

Examples

Input Output
3 3 1 3
1 2 1
2 3 5
1 3 3

6

4 4 1 4
1 2 1
2 4 1
1 3 1
3 4 1

4

5 4 4 1
1 2 3
2 3 4
3 4 5
4 5 6

-1

N M i (ui,vi,ci)
ui vi ci

T S

T

N M S T
u1 v1 c1

⋮
uM vM cM

N M S T N

2 ≤ N ≤ 100,000 M 1 ≤ M ≤ 200,000 S

1 ≤ S ≤ N T 1 ≤ T ≤ N S ≠ T M

i M ui vi ci

i ui vi 1 ≤ ui,vi,≤ N ui ≠ vi ci 1 ≤ ci ≤ 109

x y x y

{ui,vi} ≠ {uj,vj} 1 ≤ i < j ≤ M

T

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

6	/	19

Problem	E.	Tree	Separator

Time	Limit:	2	sec
Memory	Limit:	512	MB

You	are	given	a	tree	 	and	an	integer	 .	You	can	choose	arbitrary	distinct	two	vertices	 	and	 	on	 .	Let	
	be	the	simple	path	between	 	and	 .	Then,	remove	vertices	in	 ,	and	edges	such	that	one	or	both	of	its

end	vertices	is	in	 	from	 .	Your	task	is	to	choose	 	and	 	to	maximize	the	number	of	connected
components	with	 	or	more	vertices	of	 	after	that	operation.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

The	first	line	consists	of	two	integers	 .	The	following	 	lines
represent	the	information	of	edges.	The	 -th	line	consists	of	two	integers	

.	Each	 	is	an	edge	of	 .	It's	guaranteed	that	these
edges	form	a	tree.

Output
Print	the	maximum	number	of	connected	components	with	 	or	more	vertices	in	one	line.

T K u v T

P u v P

P T u v

K T

N	K
u1	v1

⋮
uN−1	vN−1

N,K	(2 ≤ N ≤ 100,000,1 ≤ K ≤ N) N − 1
(i + 1)

ui,vi	(1 ≤ ui,vi ≤ N	and	ui ≠ vi	for	each	i) {ui,vi} T

K

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

7	/	19

Examples

Input Output
2 1
1 2

0

7 3
1 2
2 3
3 4
4 5
5 6
6 7

1

12 2
1 2
2 3
3 4
4 5
3 6
6 7
7 8
8 9
6 10
10 11
11 12

4

3 1
1 2
2 3

1

3 2
1 2
2 3

0

9 3
1 2
1 3
1 4
4 5
4 6
4 7
7 8
7 9

2

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

8	/	19

Problem	F.	RPG	Maker

Time	Limit:	2	sec
Memory	Limit:	512	MB

You	are	planning	to	create	a	map	of	an	RPG.	This	map	is	represented	by	a	grid	whose	size	is	 .
Each	cell	in	this	grid	is	either	'@',	'*',	'#',	or	'.'.	The	meanings	of	the	symbols	are	as	follows.

'@':	The	start	cell.	The	story	should	start	from	this	cell.
'*':	A	city	cell.	The	story	goes	through	or	ends	with	this	cell.
'#':	A	road	cell.
'.':	An	empty	cell.

You	have	already	located	the	start	cell	and	all	city	cells	under	some	constraints	described	in	the	input
section,	but	no	road	cells	have	been	located	yet.	Then,	you	should	decide	which	cells	to	set	as	road	cells.
Here,	you	want	a	"journey"	exists	on	this	map.	Because	you	want	to	remove	the	branch	of	the	story,	the
journey	has	to	be	unforked.	More	formally,	the	journey	is	a	sequence	of	cells	and	must	satisfy	the
following	conditions:

1.	 The	journey	must	contain	as	many	city	cells	as	possible.
2.	 The	journey	must	consist	of	distinct	non-empty	cells	in	this	map.
3.	 The	journey	must	begin	with	the	start	cell.
4.	 The	journey	must	end	with	one	of	the	city	cells.
5.	 The	journey	must	contain	all	road	cells.	That	is,	road	cells	not	included	in	the	journey	must	not

exist.
6.	 The	journey	must	be	unforked.	In	more	detail,	all	road	cells	and	city	cells	except	for	a	cell	at	the

end	of	the	journey	must	share	edges	with	the	other	two	cells	both	of	which	are	also	contained	in	the
journey.	Then,	each	of	the	start	cell	and	a	cell	at	the	end	of	the	journey	must	share	an	edge	with
another	cell	contained	in	the	journey.

7.	 You	do	not	have	to	consider	the	order	of	the	cities	to	visit	during	the	journey.

Initially,	the	map	contains	no	road	cells.	You	can	change	any	empty	cells	to	road	cells	to	make	a	journey
satisfying	the	conditions	above.	Your	task	is	to	print	a	map	which	maximizes	the	number	of	cities	in	the
journey.

Input
The	input	consists	of	a	single	test	case	of	the	following	form.

	

The	first	line	consists	of	two	integers	 	and	 .	 	and	 	are	guaranteed	to	satisfy	 	and	
	for	some	positive	integers	 	and	 	().	The	following	 	lines	represent	a	map

without	road	cells.	The	 -th	line	consists	of	a	string	 	of	length	 .	The	 -th	character	of	 	is	either
'*',	'@'	or	'.'	if	both	 	and	 	are	odd,	otherwise	'.'.	The	number	of	occurrences	of	'@'	in	the	grid	is
exactly	one.	It	is	guaranteed	that	there	are	one	or	more	city	cells	on	the	grid.

Output
Print	a	map	indicating	a	journey.	If	several	maps	satisfy	the	condition,	you	can	print	any	of	them.

H × W

H W
S1
S2

⋮
SH

H W H W H = 4n − 1
W = 4m − 1 n m 1 ≤ n,m ≤ 10 H

(i + 1) Si W j Si

i j

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

9	/	19

Examples

Input Output
11 7
.......
.......
.....
.......
..@....
.......
*......
.......
....*..
.......
.......

.......

.......
#####
......#
..@...#
..#.###
*##.#..
#...#..
####*..
.......
.......

7 11
........*..
...........
...........
...........
....*...*..
...........
..*.@...*..

........*..

........#..

........#..

........#..

..##*##.*..

..#...#.#..

..*#@.##*..

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

10	/	19

Problem	G.	Coin	Slider

Time	Limit:	2	sec
Memory	Limit:	512	MB

You	are	playing	a	coin	puzzle.	The	rule	of	this	puzzle	is	as	follows:
There	are	 	coins	on	a	table.	The	 -th	coin	is	a	circle	with	 	radius,	and	its	center	is	initially	placed	at	

.	Each	coin	also	has	a	target	position:	you	should	move	the	 -th	coin	so	that	its	center	is	at	
.	You	can	move	coins	one	by	one	and	can	move	each	coin	at	most	once.	When	you	move	a	coin,

it	must	move	from	its	initial	position	to	its	target	position	along	the	straight	line.	In	addition,	coins	cannot
collide	with	each	other,	including	in	the	middle	of	moves.
The	score	of	the	puzzle	is	the	number	of	the	coins	you	move	from	their	initial	position	to	their	target
position.	Your	task	is	to	write	a	program	that	determines	the	maximum	score	for	a	given	puzzle	instance.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

	 	 	 	

	 	 	 	

The	first	line	contains	an	integer	 	(),	which	is	the	number	of	coins	used	in	the	puzzle.	The	 -
th	line	of	the	following	 	lines	consists	of	five	integers:	 ,	 ,	 ,	 ,	and	 	(,	

,).	They	describe	the	information	of	the	 -th	coin:
	is	the	radius	of	the	 -th	coin,	 	is	the	initial	position	of	the	 -th	coin,	and	 	is	the	target

position	of	the	 -th	coin.
You	can	assume	that	the	coins	do	not	contact	or	are	not	overlapped	with	each	other	at	the	initial	positions.
You	can	also	assume	that	the	maximum	score	does	not	change	even	if	the	radius	of	each	coin	changes	by	

.

Output
Print	the	maximum	score	of	the	given	puzzle	instance	in	a	line.

Examples

Input Output
3
2 0 0 1 0
2 0 5 1 5
4 1 -10 -5 10

2

3
1 0 0 5 0
1 0 5 0 0
1 5 5 0 5

3

4
1 0 0 5 0
1 0 5 0 0
1 5 5 0 5
1 5 0 0 0

0

N i ri

(sxi,syi) i

(txi, tyi)

N
r1 sx1 sy1 tx1 ty1

⋮
rN sxN syN txN tyN

N 1 ≤ N ≤ 16 i

N ri sxi syi txi tyi 1 ≤ ri ≤ 1,000
−1,000 ≤ sxi,syi, txi, tyi ≤ 1,000 (sxi,syi) ≠ (txi, tyi) i

ri i (sxi,syi) i (txi, tyi)
i

10−5

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

11	/	19

Example	1.	Initial	Positions Example	1.	After	Movements

Note
In	the	first	example,	the	third	coin	cannot	move	because	it	is	disturbed	by	the	other	two	coins.

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

12	/	19

Problem	H.	Separate	String

Time	Limit:	2	sec
Memory	Limit:	512	MB

You	are	given	a	string	 	and	a	set	 	of	 	different	strings.	You	need	to	separate	 	such	that	each	part	is
included	in	 .
For	example,	the	following	4	separation	methods	satisfy	the	condition	when	 	and	 .

Your	task	is	to	count	the	number	of	ways	to	separate	 .	Because	the	result	can	be	large,	you	should	output
the	remainder	divided	by	 .

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

The	first	line	consists	of	an	integer	 	which	is	the	number	of	the	elements	of	 .	The
following	 	lines	consist	of	 	distinct	strings	separated	by	line	breaks.	The	 -th	string	 	represents	the	 -
th	element	of	 .	 	consists	of	lowercase	letters	and	the	length	is	between	 	and	 ,	inclusive.	The
summation	of	length	of	 	is	at	most	 .	The	next	line	consists	of	a	string	 	which
consists	of	lowercase	letters	and	represents	the	string	to	be	separated	and	the	length	is	between	 	and	

,	inclusive.

Output
Calculate	the	number	of	ways	to	separate	 	and	print	the	remainder	divided	by	 .

t S N t

S

t = abab S = {a,ab,b}

a,b,a,b
a,b,ab
ab,a,b
ab,ab

t

1,000,000,007

N
s1

⋮
sN

t

N	(1 ≤ N ≤ 100,000) S

N N i si i

S si 1 100,000
si	(1 ≤ i ≤ N) 200,000 t

1
100,000

t 1,000,000,007

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

13	/	19

Examples

Input Output
3
a
b
ab
abab

4

3
a
b
c
xyz

0

7
abc
ab
bc
a
b
c
aa
aaabcbccababbc

160

10
a
aa
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaaaaaaaa
aaaaaaaaaa
aa

461695029

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

14	/	19

Problem	I.	Revenge	of	the	Endless	BFS

Time	Limit:	2	sec
Memory	Limit:	512	MB

Mr.	Endo	wanted	to	write	the	code	that	performs	breadth-first	search	(BFS),	which	is	a	search	algorithm	to
explore	all	vertices	on	a	directed	graph.	An	example	of	pseudo	code	of	BFS	is	as	follows:

1:	
2:	
3:	while	 	the	set	of	all	the	vertices
4:			
5:			for	 	in	
6:					for	each	 	such	that	there	is	an	edge	from	 	to	
7:							
8:			
9:			

However,	Mr.	Endo	apparently	forgot	to	manage	visited	vertices	in	his	code.	More	precisely,	he	wrote	the
following	code:

1:	
2:	while	 	the	set	of	all	the	vertices
3:			
4:			for	 	in	
5:					for	each	 	such	that	there	is	an	edge	from	 	to	
6:							
7:			

You	may	notice	that	for	some	graphs,	Mr.	Endo's	program	will	not	stop	because	it	keeps	running
infinitely.	Notice	that	it	does	not	necessarily	mean	the	program	cannot	explore	all	the	vertices	within	finite
steps.	Your	task	here	is	to	make	a	program	that	determines	whether	Mr.	Endo's	program	will	stop	within
finite	steps	for	a	given	directed	graph	in	order	to	point	out	the	bug	to	him.	Also,	calculate	the	minimum
number	of	loop	iterations	required	for	the	program	to	stop	if	it	is	finite.	Since	the	answer	might	be	huge,
thus	print	the	answer	modulo	 ,	which	is	a	prime	number.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

	
	

	

The	first	line	consists	of	two	integers	 	()	and	 	(),	where	 	is	the
number	of	vertices	and	 	is	the	number	of	edges	in	a	given	directed	graph,	respectively.	The	 -th	line	of
the	following	 	lines	consists	of	two	integers	 	and	 	(),	which	means	there	is	an	edge
from	 	to	 	in	the	given	graph.	The	vertex	 	is	the	start	vertex,	i.e.	 	in	the	pseudo	codes.
You	can	assume	that	the	given	graph	also	meets	the	following	conditions.

The	graph	has	no	self-loop,	i.e.,	 	for	all	 .
The	graph	has	no	multi-edge,	i.e.,	 	for	all	 .
For	each	vertex	 ,	there	is	at	least	one	path	from	the	start	vertex	 	to	 .

current ← {start_vertex}
visited ← current

visited ≠
found ← {}

u current
v u v

found ← found ∪ {v}
current ← found ∖ visited
visited ← visited ∪ found

current ← {start_vertex}
current ≠

found ← {}
u current

v u v
found ← found ∪ {v}

current ← found

109 + 7

N M
u1 v1

⋮
uM vM

N 2 ≤ N ≤ 500 M 1 ≤ M ≤ 200,000 N

M i

M ui vi 1 ≤ ui,vi ≤ N

ui vi 1 start_vertex

ui ≠ vi 1 ≤ i ≤ M
(ui,vi) ≠ (uj,vj) 1 ≤ i < j ≤ M

v 1 v

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

15	/	19

Output
If	Mr.	Endo's	wrong	BFS	code	cannot	stop	within	finite	steps	for	the	given	input	directed	graph,	print	 '-
1'	in	a	line.	Otherwise,	print	the	minimum	number	of	loop	iterations	required	to	stop	modulo	 .

Examples

Input Output
4 4
1 2
2 3
3 4
4 1

-1

4 5
1 2
2 3
3 4
4 1
1 3

7

5 13
4 2
2 4
1 2
5 4
5 1
2 1
5 3
4 3
1 5
4 5
2 3
5 2
1 3

3

109 + 7

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

16	/	19

Problem	J.	Farm	Village

Time	Limit:	2	sec
Memory	Limit:	512	MB

There	is	a	village	along	a	road.	This	village	has	 	houses	numbered	 	to	 	in	order	along	the	road.	Each
house	has	a	field	that	can	make	up	to	two	units	of	the	crop	and	needs	just	one	unit	of	the	crop.	The	total
cost	to	distribute	one	unit	of	the	crop	to	each	house	is	the	summation	of	carrying	costs	and	growing	costs.

The	carrying	cost:	The	cost	to	carry	one	unit	of	the	crop	between	the	 -th	house	and	the	 -th
house	is	 .	It	takes	the	same	cost	in	either	direction	to	carry.
The	growing	cost:	The	cost	to	grow	one	unit	of	the	crop	in	the	 -th	house's	field	is	 .

Your	task	is	to	calculate	the	minimum	total	cost	to	supply	one	unit	of	the	crop	to	each	house.

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

The	first	line	consists	of	an	integer	 ,	which	is	the	number	of	the	houses.	The	second
line	consists	of	 	integers	separated	by	spaces.	The	 -th	integer	
represents	the	carrying	cost	between	the	 -th	and	the	 -th	houses.	The	third	line	consists	of	
integers	separated	by	spaces.	The	 -th	integer	 	represents	the	growing	cost	of
the	 -th	house's	field.

Output
Print	the	minimum	cost	to	supply	one	unit	of	the	crop	to	each	house.

Examples

Input Output
2
3
1 5

5

3
100 100
1 2 3

6

4
1 2 3
1 1 100 100

12

N 1 N

i (i + 1)
di

i gi

N
d1 … dN−1
g1 … gN

N	(2 ≤ N ≤ 200,000)
N − 1 i di	(1 ≤ di ≤ 109, 1 ≤ i ≤ N − 1)

i (i + 1) N

i gi	(1 ≤ gi ≤ 109, 1 ≤ i ≤ N)
i

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

17	/	19

Problem	K.	Conveyor	Belt

Time	Limit:	2	sec
Memory	Limit:	512	MB

Awesome	Conveyor	Machine	(ACM)	is	the	most	important	equipment	of	a	factory	of	Industrial	Conveyor
Product	Corporation	(ICPC).	ACM	has	a	long	conveyor	belt	to	deliver	their	products	from	some	points	to
other	points.	You	are	a	programmer	hired	to	make	efficient	schedule	plan	for	product	delivery.
ACM's	conveyor	belt	goes	through	 	points	at	equal	intervals.	The	conveyor	has	plates	on	each	of	which
at	most	one	product	can	be	put.	Initially,	there	are	no	plates	at	any	points.	The	conveyor	belt	moves	by
exactly	one	plate	length	per	unit	time;	after	one	second,	a	plate	is	at	position	1	while	there	are	no	plates	at
the	other	positions.	After	further	1	seconds,	the	plate	at	position	1	is	moved	to	position	2	and	a	new	plate
comes	at	position	1,	and	so	on.	Note	that	the	conveyor	has	the	unlimited	number	of	plates:	after	
seconds	or	later,	each	of	the	 	positions	has	exactly	one	plate.
A	delivery	task	is	represented	by	positions	 	and	 ;	delivery	is	accomplished	by	putting	a	product	on	a
plate	on	the	belt	at	 ,	and	retrieving	it	at	 	after	 	seconds	().	(Of	course,	it	is	necessary	that	an
empty	plate	exists	at	the	position	at	the	putting	time.)	In	addition,	putting	and	retrieving	products	must	be
done	in	the	following	manner:

When	putting	and	retrieving	a	product,	a	plate	must	be	located	just	at	the	position.	That	is,	products
must	be	put	and	retrieved	at	integer	seconds.
Putting	and	retrieving	at	the	same	position	cannot	be	done	at	the	same	time.	On	the	other	hand,
putting	and	retrieving	at	the	different	positions	can	be	done	at	the	same	time.

If	there	are	several	tasks,	the	time	to	finish	all	the	tasks	may	be	reduced	by	changing	schedule	when	each
product	is	put	on	the	belt.	Your	job	is	to	write	a	program	minimizing	the	time	to	complete	all	the	tasks...
wait,	wait.	When	have	you	started	misunderstanding	that	you	can	know	all	the	tasks	initially?	New
delivery	requests	are	coming	moment	by	moment,	like	plates	on	the	conveyor!	So	you	should	update	your
optimal	schedule	per	every	new	request.
A	request	consists	of	a	start	point	 ,	a	goal	point	 ,	and	the	number	 	of	products	to	deliver	from	 	to	 .
Delivery	requests	will	be	added	 	times.	Your	(true)	job	is	to	write	a	program	such	that	for	each	

,	minimizing	the	entire	time	to	complete	delivery	tasks	in	requests	1	to	 .

Input
The	input	consists	of	a	single	test	case	formatted	as	follows.

	
	 	

	 	

A	first	line	includes	two	integers	 	and	 	(,):	 	is	the	number	of	positions
the	conveyor	belt	goes	through	and	 	is	the	number	of	requests	will	come.	The	 -th	line	of	the	following	
	lines	consists	of	three	integers	 ,	 ,	and	 	(,),	which	mean	that	the	 -th

request	requires	 	products	to	be	delivered	from	position	 	to	position	 .

Output
In	the	 -th	line,	print	the	minimum	time	to	complete	all	the	tasks	required	by	requests	 	to	 .

N

N

N

a b

a b b − a a < b

a b p a b

Q

1 ≤ i ≤ Q i

N Q
a1 b1 p1

⋮
aQ bQ pQ

N Q 2 ≤ N ≤ 105 1 ≤ Q ≤ 105 N

Q i

Q ai bi pi 1 ≤ ai < bi ≤ N 1 ≤ pi ≤ 109 i

pi ai bi

i 1 i

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

18	/	19

Examples

Input Output
5 2
1 4 1
2 3 1

4
4

5 2
1 4 1
2 3 5

4
8

5 2
1 3 3
3 5 1

5
6

10 4
3 5 2
5 7 5
8 9 2
1 7 5

6
11
11
16

Note
Regarding	the	first	example,	the	minimum	time	to	complete	only	the	first	request	is	 	seconds.	All	the	two
requests	can	be	completed	within	 	seconds	too.	See	the	below	figure.

4
4

ACM	International	Collegiate	Programming	Contest
JAG	Practice	Contest	for	ACM-ICPC	Asia	Regional	2017,	AtCoder,	2017–11–19

19	/	19

	Problem A. Window
	Input
	Output
	Examples

	Problem B. Tournament Chart
	Input
	Output
	Examples

	Problem C. Prime-Factor Prime
	Input
	Output
	Examples
	Note

	Problem D. Revenge of the Broken Door
	Input
	Output
	Examples

	Problem E. Tree Separator
	Input
	Output
	Examples

	Problem F. RPG Maker
	Input
	Output
	Examples

	Problem G. Coin Slider
	Input
	Output
	Examples
	Note

	Problem H. Separate String
	Input
	Output
	Examples

	Problem I. Revenge of the Endless BFS
	Input
	Output
	Examples

	Problem J. Farm Village
	Input
	Output
	Examples

	Problem K. Conveyor Belt
	Input
	Output
	Examples
	Note

