
Problem A : Carpenters' Language
Time Limit : 1 sec, Memory Limit : 65536 KB

International Carpenters Professionals Company (ICPC) is a top
construction company with a lot of expert carpenters. What makes
ICPC a top company is their original language.

The syntax of the language is simply given in CFG as follows:

S > SS | (S) |)S(| ε

In other words, a right parenthesis can be closed by a left
parenthesis and a left parenthesis can be closed by a right
parenthesis in this language.

Alex, a grad student mastering linguistics, decided to study ICPC's
language. As a first step of the study, he needs to judge whether a
text is well-formed in the language or not. Then, he asked you, a
great programmer, to write a program for the judgement.

Alex's request is as follows: You have an empty string S in the
beginning, and construct longer string by inserting a sequence of '('
or ')' into the string. You will receive q queries, each of which
consists of three elements (p,c,n), where p is the position to insert,
n is the number of characters to insert and c is either '(' or ')', the
character to insert. For each query, your program should insert c
repeated by n times into the p-th position of S from the beginning.
Also it should output, after performing each insert operation, "Yes" if
S is in the language and "No" if S is not in the language.

Please help Alex to support his study, otherwise he will fail to
graduate the college.

Input

The first line contains one integer q (1 ≤ q ≤ 105) indicating the
number of queries, follows q lines of three elements, p i, c i, n i,

separated by a single space (1 ≤ i ≤ q, c i = '('or') ', 0 ≤ p i ≤ length of S

before i-th query, 1 ≤ n ≤ 220). It is guaranteed that all the queries in
the input are valid.

Output

For each query, output "Yes" if S is in the language and "No" if S is
not in the language.

Sample Input 1
3
0 (10
10) 5
10) 5

Output for the Sample Input 1
No
No
Yes

Sample Input 2
3
0) 10
10 (5
10 (5

Output for the Sample Input 2
No
No
Yes

Sample Input 3
3
0 (10
10) 20
0 (10

Output for the Sample Input 3
No
No
Yes

Problem B : Kth Sentence
Time Limit : 3 sec, Memory Limit : 65536 KB

A student, Kita_masa, is taking an English examination. In this
examination, he has to write a sentence of length m.

Since he completely forgot the English grammar, he decided to
consider all sentences of length m constructed by concatenating the
words he knows and write the K-th sentence among the candidates
sorted in lexicographic order. He believes that it must be the correct
sentence because K is today's lucky number for him.

Each word may be used multiple times (or it's also fine not to use it
at all) and the sentence does not contain any extra character
between words. Two sentences are considered different if the order
of the words are different even if the concatenation resulted in the
same string.

Input

The first line contains three integers n (1 ≤ n ≤ 100), m
(1 ≤ m ≤ 2000) and K (1 ≤ K ≤ 1018), separated by a single space.
Each of the following n lines contains a word that Kita_masa knows.
The length of each word is between 1 and 200, inclusive, and the
words contain only lowercase letters. You may assume all the words
given are distinct.

Output

Print the K-th (1-based) sentence of length m in lexicographic order.
If there is no such a sentence, print "-".

Sample Input 1
2 10 2
hello
world

Output for the Sample Input 1

helloworld

Sample Input 2
3 3 6
a
aa
b

Output for the Sample Input 2
aba

Sample Input 3
2 59 1000000000000000000
a
b

Output for the Sample Input 3

Problem C : A Light Road
Time Limit : 2 sec, Memory Limit : 65536 KB

There is an evil creature in a square on N-by-M grid (2 ≤ N,M ≤ 100),
and you want to kill it using a laser generator located in a different
square. Since the location and direction of the laser generator are
fixed, you may need to use several mirrors to reflect laser beams.
There are some obstacles on the grid and you have a limited number
of mirrors. Please find out whether it is possible to kill the creature,
and if possible, find the minimum number of mirrors.

There are two types of single-sided mirrors; type P mirrors can be
placed at the angle of 45 or 225 degrees from east-west direction,
and type Q mirrors can be placed with at the angle of 135 or 315
degrees. For example, four mirrors are located properly, laser go
through like the following.

Note that mirrors are single-sided, and thus back side (the side with
cross in the above picture) is not reflective. You have A type P
mirrors, and also A type Q mirrors (0 ≤ A ≤ 10). Although you cannot
put mirrors onto the squares with the creature or the laser
generator, laser beam can pass through the square. Evil creature is
killed if the laser reaches the square it is in.

Input

Each test case consists of several lines.

The first line contains three integers, N, M, and A. Each of the
following N lines contains M characters, and represents the grid
information. '#', '.', 'S', 'G' indicates obstacle, empty square, the
location of the laser generator, and the location of the evil creature,
respectively. The first line shows the information in northernmost
squares and the last line shows the information in southernmost
squares. You can assume that there is exactly one laser generator and
exactly one creature, and the laser generator emits laser beam always
toward the south.

Output

Output the minimum number of mirrors used if you can kill creature,
or -1 otherwise.

Sample Input 1
3 3 2
S#.
...
.#G

Output for the Sample Input 1
2

Sample Input 2
3 3 1
S#.
...
.#G

Output for the Sample Input 2
1

Sample Input 3
3 3 1
S#G
...
.#.

Output for the Sample Input 3
2

Sample Input 4
4 3 2
S..
...
..#
.#G

Output for the Sample Input 4
1

Problem D : Matrix Operation
Time Limit : 2 sec, Memory Limit : 65536 KB

You are a student looking for a job. Today you had an employment
examination for an IT company. They asked you to write an efficient
program to perform several operations. First, they showed you an
N × N square matrix and a list of operations. All operations but one
modify the matrix, and the last operation outputs the character in a
specified cell. Please remember that you need to output the final
matrix after you finish all the operations.

Followings are the detail of the operations:

WR r c v
(Write operation) write a integer v into the cell (r,c)
(1 ≤ v ≤ 1,000,000)

CP r1 c1 r2 c2
(Copy operation) copy a character in the cell (r1,c2) into the cell
(r2,c2)

SR r1 r2
(Swap Row operation) swap the r1-th row and r2-th row

SC c1 c2
(Swap Column operation) swap the c1-th column and c2-th
column

RL
(Rotate Left operation) rotate the whole matrix in counter-
clockwise direction by 90 degrees

RR
(Rotate Right operation) rotate the whole matrix in clockwise
direction by 90 degrees

RH
(Reflect Horizontal operation) reverse the order of the rows

RV
(Reflect Vertical operation) reverse the order of the columns

Input

First line of each testcase contains nine integers. First two integers
in the line, N and Q, indicate the size of matrix and the number of
queries, respectively (1 ≤ N,Q ≤ 40,000). Next three integers, A B,
and C, are coefficients to calculate values in initial matrix

(1 ≤ A,B,C ≤ 1,000,000), and they are used as follows:
Ar,c = (r * A + c * B)modC where r and c are row and column indices,

respectively (1 ≤ r,c ≤ N). Last four integers, D, E, F, and G, are
coefficients to compute the final hash value mentioned in the next
section (1 ≤ D ≤ E ≤ N,1 ≤ F ≤ G ≤ N,E − D ≤ 1,000,G − F ≤ 1,000).
Each of next Q lines contains one operation in the format as
described above.

Output

Output a hash value h computed from the final matrix B by using
following pseudo source code.

h < 314159265
for r = D...E
 for c = F...G
 h < (31 * h + B_{r,c}) mod 100,000,007

where "<-" is a destructive assignment operator, "for i = S...T"
indicates a loop for i from S to T (both inclusive), and "mod" is a
remainder operation.

Sample Input 1
2 1 3 6 12 1 2 1 2
WR 1 1 1

Output for the Sample Input 1
676573821

Sample Input 2
2 1 3 6 12 1 2 1 2
RL

Output for the Sample Input 2
676636559

Sample Input 3
2 1 3 6 12 1 2 1 2
RH

Output for the Sample Input 3
676547189

Sample Input 4
39989 6 999983 999979 999961 1 1000 1 1000
SR 1 39989
SC 1 39989
RL
RH
RR
RV

Output for the Sample Input 4
458797120

Problem E : Multi-ending Story
Time Limit : 5 sec, Memory Limit : 65536 KB

You are a programmer who loves bishojo games (a sub-genre of
dating simulation games). A game, which is titled "I * C * P * C!" and
was released yesterday, has arrived to you just now. This game has
multiple endings. When you complete all of those endings, you can get
a special figure of the main heroine, Sakuya. So, you want to hurry
and play the game! But, let's calm down a bit and think how to
complete all of the endings in the shortest time first.

In fact, you have a special skill that allows you to know the
structure of branching points of games. By using the skill, you have
found out that all of the branching points in this game are to select
two choices "Yes" or "No", and once a different choice is taken the
branched stories flow to different endings; they won't converge any
more, like a binary tree. You also noticed that it takes exactly one
minute to proceed the game from a branching point to another
branching point or to an ending. In addition, you can assume it only
takes negligible time to return to the beginning of the game (``reset'')
and to play from the beginning to the first branching point.

The game has an additional feature called "Quick Save", which can
significantly reduce the playing time for completion. The feature
allows you to record the point where you are currently playing and
return there at any time later. You can record any number of times,
but you can hold only the last recorded point. That is, when you use
Quick Save, you overwrite the previous record. If you want to return
to the overwritten point, you must play the game from the beginning
once again.

Well, let's estimate how long it will take for completing all of the
endings in the shortest time.

Input

A data set is given in the following format.

The first line of the data set contains one integer N
(2 ≤ N ≤ 500,000), which denotes the number of the endings in this
game. The following N − 1 lines describe the branching points. The i-
th line describes the branching point of ID number i and contains two
integers Yes i and No i (i + 1 ≤ Yes i,No i ≤ N), which denote the ID

numbers of the next branching points when you select Yes or No
respectively. Yes i = N means that you can reach an ending if you

select Yes, and so for No i = N. The branching point with ID 1 is the

first branching point. The branching points with ID between 2 and
N − 1 (inclusive) appear exactly once in Yes i's and No i's.

Output

Print the shortest time in a line.

Sample Input 1
4
2 3
4 4
4 4

Output for the Sample Input 1
6

Sample Input 2
5
5 2
3 5
5 4
5 5

Output for the Sample Input 2
8

Problem F : Network Reliability
Time Limit : 3 sec, Memory Limit : 65536 KB

An undirected graph is given. Each edge of the graph disappears with
a constant probability. Calculate the probability with which the
remained graph is connected.

Input

The first line contains three integers N (1 ≤ N ≤ 14), M (0 ≤ M ≤ 100)
and P (0 ≤ P ≤ 100), separated by a single space. N is the number of
the vertices and M is the number of the edges. P is the probability
represented by a percentage.

The following M lines describe the edges. Each line contains two
integers v i and u i (1 ≤ u i,v i ≤ N). (u i,v i) indicates the edge that

connects the two vertices u i and v i.

Output

Output a line containing the probability with which the remained
graph is connected. Your program may output an arbitrary number of
digits after the decimal point. However, the absolute error should be

10−9 or less.

Sample Input 1
3 3 50
1 2
2 3
3 1

Output for the Sample Input 1
0.500000000000

Sample Input 2
3 3 10
1 2
2 3

3 1

Output for the Sample Input 2
0.972000000000

Sample Input 3
4 5 50
1 2
2 3
3 4
4 1
1 3

Output for the Sample Input 3
0.437500000000

Problem G : Runaway Domino
Time Limit : 3 sec, Memory Limit : 65536 KB

``Domino effect'' is a famous play using dominoes. A player sets up a
chain of dominoes stood. After a chain is formed, the player topples
one end of the dominoes. The first domino topples the second domino,
the second topples the third and so on.

You are playing domino effect. Before you finish to set up a chain of
domino, a domino block started to topple, unfortunately. You have to
stop the toppling as soon as possible.

The domino chain forms a polygonal line on a two-dimensional
coordinate system without self intersections. The toppling starts
from a certain point on the domino chain and continues toward the
both end of the chain. If the toppling starts on an end of the chain,
the toppling continue toward the other end. The toppling of a
direction stops when you touch the toppling point or the toppling
reaches an end of the domino chain.

You can assume that:

You are a point without volume on the two-dimensional
coordinate system.
The toppling stops soon after touching the toppling point.
You can step over the domino chain without toppling it.

You will given the form of the domino chain, the starting point of
the toppling, your coordinates when the toppling started, the
toppling velocity and the your velocity. You are task is to write a
program that calculates your optimal move to stop the toppling at
the earliest timing and calculates the minimum time to stop the
toppling.

Input

The first line contains one integer N, which denotes the number of
vertices in the polygonal line of the domino chain (2 ≤ N ≤ 1000).

Then N lines follow, each consists of two integers x i and y i, which

denote the coordinates of the i-th vertex (−10,000 ≤ x,y ≤ 10000).
The next line consists of three integers x t, y t and v t, which denote the

coordinates of the starting point and the velocity of the toppling.
The last line consists of three integers xp, yp and vp, which denotes

the coordinates of you when the toppling started and the velocity
(1 ≤ v t < vp ≤ 10). You may assume that the starting point of the

toppling lies on the polygonal line.

Output

Print the minimum time to stop the toppling. The output must have a

relative or absolute error less than 10−6.

Sample Input 1
2
0 0
15 0
5 0 1
10 10 2

Output for the Sample Input 1
5.0

Sample Input 2
3
10 0
0 0
0 10
1 0 1
3 0 2

Output for the Sample Input 2
4.072027

Sample Input 3
2
0 0
10 0
5 0 1
9 0 3

Output for the Sample Input 3

2.0

Problem H : Sunny Graph
Time Limit : 3 sec, Memory Limit : 65536 KB

The Sun is a great heavenly body. The Sun is worshiped by various
religions. Bob loves the Sun and loves any object that is similar to
the Sun. He noticed that he can find the shape of the Sun in certain
graphs. He calls such graphs "Sunny".

We define the property "Sunny" mathematically. A graph G = (V,E)
with a vertex v ∈ V is called "Sunny" when there exists a subgraph
G' = (V,E'),E' ⊆ E that has the following two properties. (Be
careful, the set of vertices must be the same.)

1. The connected component containing v is a cycle that consists
of three or more vertices.

2. Every other component has exactly two vertices.

The following picture is an example of a subgraph G' = (V,E') that
has the above property.

Given a simple graph (In each edge, two end points are different.
Every pair of vertices has one or no edge.) G = (V,E), write a
program that decides whether the given graph with the vertex 1 is
"Sunny" or not.

Input

The first line contains two integers N (odd, 1 ≤ N ≤ 200) and M
(0 ≤ M ≤ 20,000), separated by a single space. N is the number of the
vertices and M is the number of the edges.

The following M lines describe the edges. Each line contains two
integers v i and u i (1 ≤ u i,v i ≤ N). (u i,v i) indicates the edge that

connects the two vertices u i and v i. u i and v i are different, and every

pair (u i,v i) are different.

Output

Print a line containing "Yes" when the graph is "Sunny". Otherwise,
print "No".

Sample Input 1
5 5
1 2
2 3
3 4
4 5
1 3

Output for the Sample Input 1
Yes

Sample Input 2
5 5
1 2
2 3
3 4
4 5
1 4

Output for the Sample Input 2
No

Problem I : Testing Circuits
Time Limit : 5 sec, Memory Limit : 65536 KB

A Boolean expression is given. In the expression, each variable
appears exactly once. Calculate the number of variable assignments
that make the expression evaluate to true.

Input

A data set consists of only one line. The Boolean expression is given
by a string which consists of digits, x, (,), |, &, and ~. Other
characters such as spaces are not contained. The expression never
exceeds 1,000,000 characters. The grammar of the expressions is
given by the following BNF.

<expression> ::= <term> | <expression> "|" <term>
<term> ::= <factor> | <term> "&" <factor>
<factor> ::= <variable> | "~" <factor> | "(" <expression> ")"
<variable> ::= "x" <number>
<number> ::= "1" | "2" |... | "999999" | "1000000"

The expression obeys this syntax and thus you do not have to care
about grammatical errors. When the expression contains N variables,
each variable in {x1, x2,..., xN} appears exactly once.

Output

Output a line containing the number of variable assignments that
make the expression evaluate to true in modulo 1,000,000,007.

Sample Input 1
(x1&x2)

Output for the Sample Input 1
1

Sample Input 2
(x1&x2)|(x3&x4)|(~(x5|x6)&(x7&x8))

Output for the Sample Input 2
121

Problem J : World Trip
Time Limit : 5 sec, Memory Limit : 65536 KB

Kita_masa is planning a trip around the world. This world has N
countries and the country i has M i cities. Kita_masa wants to visit

every city exactly once, and return back to the starting city.

In this world, people can travel only by airplane. There are two kinds
of airlines: domestic and international lines. Since international
airports require special facilities such as customs and passport
control, only a few cities in each country have international airports.

You are given a list of all flight routes in this world and prices for
each route. Now it's time to calculate the cheapest route for
Kita_masa's world trip!

Input

The first line contains two integers N and K, which represent the
number of countries and the number of flight routes, respectively.
The second line contains N integers, and the i-th integer M i

represents the number of cities in the country i. The third line
contains N integers too, and the i-th integer F i represents the

number of international airports in the country i. Each of the
following K lines contains five integers [Country 1] [City 1]
[Country 2] [City 2] [Price]. This means that, there is a bi-
directional flight route between the [City 1] in [Country 1] and the
[City 2] in [Country 2], and its price is [Price].

Note that cities in each country are numbered from 1, and the cities
whose city number is smaller or equal to F i have international

airports. That is, if there is a flight route between the city c1 in the

country n1 and the city c2 in the country n2 with n1 ≠ n2, it must be

c1 ≤ Fn1 and c2 ≤ Fn2. You can assume that there's no flight route

which departs from one city and flies back to the same city, and that

at most one flight route exists in this world for each pair of cities.

The following constraints hold for each dataset:

1 ≤ N ≤ 15
1 ≤ M i ≤ 15

1 ≤ F i ≤ 4

sum(F i) ≤ 15

1 ≤ Price ≤ 10,000

Output

Print a line that contains a single integer representing the minimum
price to make a world trip.

If such a trip is impossible, print -1 instead.

Sample Input 1
4 6
1 1 1 1
1 1 1 1
1 1 2 1 1
1 1 3 1 2
1 1 4 1 1
2 1 3 1 1
2 1 4 1 2
3 1 4 1 1

Output for the Sample Input 1
4

Sample Input 2
2 16
4 4
2 2
1 1 1 2 1
1 1 1 3 2
1 1 1 4 1
1 2 1 3 1
1 2 1 4 2
1 3 1 4 1
2 1 2 2 1
2 1 2 3 2
2 1 2 4 1
2 2 2 3 1
2 2 2 4 2
2 3 2 4 1
1 1 2 1 1
1 1 2 2 2

1 2 2 1 2
1 2 2 2 1

Output for the Sample Input 2
8

Sample Input 3
2 2
2 1
1 1
1 1 1 2 1
1 1 2 1 1

Output for the Sample Input 3
1

