
The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem A
Chandelier

Input File: chandelier.in

Lamps-O-Maticcompany assembles very large chandeliers. A chandelier consists of multiple levels. On the
first level crystal pendants are attached to the rings. Assembled rings and new pendants are attached to the rings
of the next level, and so on. At the end there is a single large ring — the complete chandelier with multiple
smaller rings and pendants hanging from it.

A special-purpose robot assembles chandeliers. It has a supply of crystal pendants and empty rings, and a stack
to store elements of a chandelier during assembly. Initially the stack is empty. Robot executes a list of
commands to assemble a chandelier.

a aa2 aaa3 aa2aaa4 aaaaa3aaa2aaa45

On command “a” robot takes a new crystal pendant and places it on the top of the stack. On command “1” to
“9” robot takes the corresponding number of items from the top of the stack and consecutively attaches them to
the new ring. The newly assembled ring is then placed on the top of the stack. At the end of the program there is
a single item on the stack — the complete chandelier.

Unfortunately, for some programs it turns out that the stack during their execution needs to store too many items
at some moments. Your task is to optimize the given program, so that the overall design of the respective
chandelier remains the same, but the maximal number of items on the stack during the execution is minimal. A
pendant or any complex multi-level assembled ring count as a single item of the stack.

The design of a chandelier is considered to be the same if each ring contains the same items in the same order.
Since rings are circular it does not matter what item is on the top of the stack when the robot receives a
command to assemble a new ring, but the relative order of the items on the stack is important. For example, if
the robot receives command “4” when items〈i1, i2, i3, i4〉 are on the top of the stack in this order (i1 being the
topmost), then the same ring is also assembled if these items are arranged on the stack in the following ways:
〈i2, i3, i4, i1〉, or 〈i3, i4, i1, i2〉, or 〈i4, i1, i2, i3〉.

Input
The first line of the input file contains a single integerN that indicates the number of programs. Each of the next
N lines contains a valid program for the robot. The program consists of at most 10,000 characters.

Output
For each program, you should write two lines. On the first line write the minimal required stack capacity
(number of items it can hold) to assemble the chandelier. On the second line write some program for the
assembly robot that uses stack of this capacity and results in the same chandelier.

Write a blank line between two instances.



The 2005 ACM Programming Contest Practice Contest for World Finals

Sample Input
1
aaaaa3aaa2aaa45

Output for the Sample Input
6
aaa3aaa2aaa4aa5



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem B
Dancing Cube
Input File: cube.in

A dancing cubeis built with eight hollow smaller cubes called unit blocks. Each inner face of the unit blocks is
colored white, blue, yellow or red. Every unit block has exactly one white face and one red face opposite to
each other. The dancing cube is placed on a horizontal floor, so that its four vertical faces look toward north,
south, east and west.

We put amagical sphere, whose size fits a unit block, into one of the unit blocks. Then, according to the bottom
color of the unit block which the magical sphere is in, the dancing cube and the magical sphere act as described
below. After the action, depending on a new state of the magical sphere and the dancing cube, they act over
again. We call a series of the actions adanceof the cube. The dance stops when the magical sphere goes out of
the dancing cube.

When the bottom is red, the magical sphere jumps up to the upper unit block. If the sphere is already in one of
the upper unit blocks, it jumps out of the dancing cube causing stop of the dance.

When the bottom is white, the magical sphere falls into the lower unit block. If the sphere is already in the
lower, it bounces on the floor and springs up to the upper block.

When the bottom face is colored blue, the dancing cube rolls in the direction of the vertical white face from the
magical sphere. In this case, the sphere does not move to another block.

When the bottom face is colored yellow, the magical sphere first moves toward the vertical white face, then the
dancing cube rolls in the direction of the vertical white face from the sphere before its movement. In case the
sphere moves out of the dancing cube, the cube makes the last roll before it stops the dance.

red

white

blue

Cube rolls in this direction

white

red

yellow

Cube rolls in this direction

Sphere moves this way 

Your task is to write a program that simulates the dance of the cube and prints the direction which the dancing
cube rolls in.

Input
The input consists of a set of test cases each of which contain nine lines.

The first line of each case contains three letters, separated by a space, which indicates the initial position of the
magical sphere. The first letter is eitherT or B, the second eitherNor S, the third eitherE or W. HereT, B, N, S,
E andWrepresent upside, downside, north, south, east and west respectively.

The next eight lines describe blocks in the following order: the upper-northeastern, upper-northwestern,



The 2005 ACM Programming Contest Practice Contest for World Finals

upper-southeastern, upper-southwestern, lower-northeastern, lower-northwestern, lower-southeastern and
lower-southwestern ones. Each line consists of six letters indicating the color of the top, northern, eastern,
western, southern and bottom sides respectively. Each letter isR (representing red),W(white),B (blue) orY
(yellow).

The end of input is indicated by end of file.

Output
For each case, print in a line an integern, which represents the number of rolls the dancing cube makes,
followed byn letters, each of which represents the direction the cube rolls in. Each letter should be one ofN
(representing north),S (south),E (east) andW(west). If the dance of the cube is not stopped, just print-1
instead.

The samples below may help you with your understanding.

Sample Input
B S W
B Y R W B B
W B B Y Y R
R B Y Y B W
B Y R W B B
W B B Y Y R
B B W R Y Y
R B Y Y B W
B W B Y R Y
T S E
B Y R W B B
W B B Y Y R
R B Y Y B W
B Y R W B B
W B B Y Y R
B B W R Y Y
R B Y Y B W
B W B Y R Y

Output for the Sample Input
5 N E N N S
-1



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem C
Cutting Edge
Input File: cut.in

Uncle Jeff owns a glass shop, which sells glass panes for windows and picture frames. As you probably know, a
glass pane can only be cut if the cut goes from edge to edge of the pane in a straight line. The figure below
shows how a glass pane can be cut into three smaller glass panes.

(a) a whole glass pane (b) first cut (c) second cut

Uncle Jeff normally operates as follows. He first collects various orders for small rectangular glass panes, for
windows or picture frames. He then marks the position of each small rectangular pane onto a big rectangular
glass pane, such that no two marked rectangles overlap. Finally, he performs a sequence of horizontal and
vertical cuts, always from edge to edge of the pane being cut, so as to produce glass panes for all the customers.

Since the last phase (the actual cutting of the big glass pane into pieces) is the most boring thing one could ever
imagine, uncle Jeff is asking you for help. He wants a program which given a big rectangular glass pane and
lower-left and upper-right coordinates of each marked rectangle determines the order in which the edge-to-edge
cuts can be performed. This list of cuts will be fed into a machine which will do the boring cuts for him!

Input
The input contains several test cases. The first line of a test case contains an integerN indicating the number of
windows and picture frames in the test (2≤ N ≤ 2000). Each of the nextN lines contains four integersX1, Y1,
X2, Y2, where (X1,Y1) and (X2,Y2) represent the lower-left and upper-right coordinates marked by uncle Jeff on
the big glass pane (−5000≤ X1,Y1,X2,Y2 ≤ 5000;X1 < X2 andY1 < Y2). You should assume the following of
each test case:

• The marked rectangles do not overlap (but may intersect on the border points) and divide the big glass
pane completely into rectangular regions, so that no glass is wasted. This means that the lower-left and
upper-right coordinates of the big glass pane can be inferred from the coordinates of the marked
rectangles.
• It is possible to split up the big glass pane into the small marked rectangles through a sequence of

edge-to-edge cuts.

The end of input is indicated byN = 0.

Output
For each test case in the input your program must produce an ordered list of cuts that must be performed to
separate the big glass pane into the desired smaller panes. Each cut must appear in a different line. A cut is
described by four integersX1, Y1, X2, Y2, where (X1,Y1) and (X2,Y2) specify the endpoints of the cut, with
X1 < X2 andY1 = Y2 for a horizontal cut andX1 = X2 andY1 < Y2 for a vertical cut. As more than one ordering
of cuts may be possible, your program must print the list in a particular order. If at some point more than one
cut is possible, print first the cut with smallerX1; if more than one cut is still possible, print first the one with
smallerY1. Print a blank line after each test case list.



The 2005 ACM Programming Contest Practice Contest for World Finals

Sample Input
3
0 0 20 30
20 0 40 20
20 20 40 30
6
1 2 2 4
2 3 3 5
1 4 2 5
2 2 3 3
3 2 4 3
3 3 4 5
0

Output for the Sample Input
20 0 20 30
20 20 40 20

2 2 2 5
1 4 2 4
2 3 4 3
3 2 3 3
3 3 3 5



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem D
Game

Input File: game.in

There is a legend that mathematicians in the XVIII century enjoyed playing the following game. The game was
played by three mathematicians. One of them was the game master. First of all, the game master declared some
positive integer numberN. After that he chose two different integer numbersX andY ranging from 1 toN and
told their sum to one player and their product to the other player. Each player knew whether he was told the sum
or the product of the chosen numbers.

After that the players in turn informed the game master whether they knew the numbers he had chosen. First the
player who was told the sum said whether he knew the numbers, after that the player who was told the product
did, and so on.

For example the dialog could look like this.

Game master: “LetN be 10.”

After that he chooses two numbers ranging from 1 to 10 and tells their sum to player S and their product to
player P.

Player S: “I don’t know these numbers.”
Player P: “I don’t know these numbers.”
Player S: “I don’t know these numbers.”
Player P: “I don’t know these numbers.”
Player S: “Oh, now I know these numbers. You have chosen 3 and 6.”

GivenN andM — the number of times the players have said “I don’t know these numbers,” you have to find all
possible pairs of numbers that could have been chosen by the game master.

Input
Each line of the input file containsN andM (2 ≤ N ≤ 200, 0≤ M ≤ 100). The input file ends at a line
containing two zeros.

Output
For each instance, first output the number of possible pairs of numbers that could have been chosen by the game
master from the range 1 toN if both players altogether had said “I don’t know these numbers”M times. After
that output these pairs one on a line. The first number of each pair must be smaller than the second. The pairs
must be sorted in ascending order by the smaller numbers of pairs, then the greater ones. Output a blank line
between two instances.

Sample Input
10 4
0 0

Output for the Sample Input
3
2 5
3 6
3 10



The 2005 ACM Programming Contest Practice Contest for World Finals



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem E
Gunman

Input File: gunman.in

Consider a 3D scene with OXYZ coordinate system. Axis OX points to the right, axis OY points up, and axis
OZ points away from you. There is a number of rectangular windows on the scene. The plane of each window
is parallel to OXY, its sides are parallel to OX and OY . All windows are situated at different depths on the scene
(different coordinatesz> 0).

Y

Z

X
1

1 2 3 4 5 6 7

2
3

4
5

6

O−1

A gunman with a rifle moves along OX axis (y = 0 andz= 0). He can shoot a bullet in a straight line. His goal
is to shoot a single bullet through all the windows. Just touching a window edge is enough.

Your task is to determine how to make such shot.

Input
The input file consists of a series of test cases.

The first line of each case contains a single integer numbern (2 ≤ n ≤ 100) — the number of windows on the
scene. The followingn lines describe the windows. Each line contains five integer numbersx1i , y1i , x2i , y2i , zi

(0 < x1i , y1i , x2i , y2i , zi < 1000). Here (x1i , y1i , zi) are coordinates of the bottom left corner of the window, and
(x2i , y2i , zi) are coordinates of the top right corner of the window (x1i < x2i , y1i < y2i). Windows are ordered byz
coordinate (zi > zi−1 for 2 ≤ i ≤ n).

The end of the input file is indicated byn = 0.

Output
Output a single word “UNSOLVABLE” if the gunman cannot reach the goal of shooting a bullet through all the
windows.

Otherwise, on the first line output a word “SOLUTION”. On the next line outputx coordinate of the point from
which the gunman must fire a bullet. On the followingn lines outputx, y, z coordinates of the points where the
bullet goes through the consecutive windows. All coordinates in the output file must be printed with six digits
after decimal point.

Output a blank line between two cases.



The 2005 ACM Programming Contest Practice Contest for World Finals

Sample Input
3
1 3 5 5 3
1 2 5 7 5
5 2 7 6 6
3
2 1 5 4 1
3 5 6 8 2
4 3 8 6 4
0

Output for the Sample Input
SOLUTION
-1.000000
2.000000 3.000000 3.000000
4.000000 5.000000 5.000000
5.000000 6.000000 6.000000

UNSOLVABLE



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem F
Illumination
Input File: ill.in

You are givenN light sources on the plane, each of which illuminates the angle of 2π/N with the vertex in the
source point (including its sides).

2π /N
light

source

You must choose the direction of the illuminated angle for each of these sources, so that the whole plane is
illuminated. It can be proved that this is always possible.

3

1 2

A light source itself casts no shadow and does not interfere with light beams from the other sources.

Input
The input file contains multiple test cases.

The first line of each case containsN — the number of light sources (3≤ N ≤ 30). NextN lines contain two
integer numbers each — the coordinates of the light sources. All coordinates do not exceed 100 by their
absolute value. No two sources coincide.

The last line of the input file contains a single zero.

Output
For each test case, printN real numbers — for each light source specify an angle that the bisector of the
illuminated angle makes with OX axis, counterclockwise. Print one number per line. Print eight digits after the
decimal point. No angle must exceed 100π by its absolute value. Print a blank line between two cases.



The 2005 ACM Programming Contest Practice Contest for World Finals

O

Y

X O

Y

X

Sample Input
3
0 0
2 0
1 1
0

Output for the Sample Input
0.52359878
2.61799388
4.71238898



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem G
Joke with Turtles

Input File: joke.in

There is a famous joke-riddle for children:

Three turtles are crawling along a road. One turtle says: “There are two turtles ahead of me.” The
other turtle says: “There are two turtles behind me.” The third turtle says: “There are two turtles
ahead of me and two turtles behind me.” How could this have happened?
The answer is — the third turtle is lying!

Now in this problem you haven turtles crawling along a road. Some of them are crawling in a group, so that
they do not see members of their group neither ahead nor behind them. Each turtle makes a statement of the
form: “There areai turtles crawling ahead of me andbi turtles crawling behind me.” Your task is to find the
minimal number of turtles that must be lying.

Let us formalize this task. Turtlei hasxi coordinate. Some turtles may have the same coordinate. Turtlei tells
the truth if and only ifai is the number of turtles such thatx j > xi andbi is the number of turtles such that
x j < xi . Otherwise, turtlei is lying.

Input
The input file consists of a set of test cases.

The first line of each case contains integer numbern (1 ≤ n ≤ 1000). It is followed byn lines containing
numbersai andbi (0 ≤ ai , bi ≤ 1000) that describe statements of each turtle fori from 1 ton.

n = 0 indicates the end of the input file.

Output
For each case, write in a line an integer numberm— the minimal number of turtles that must be lying, followed
by m integers — turtles that are lying. Turtles can be printed in any order. If there are different sets ofm lying
turtles, then print any of them. No blank lines should appear.

Sample Input
3
2 0
0 2
2 2
5
0 2
0 3
2 1
1 2
4 0
0

Output for the Sample Input
1 3
2 1 4



The 2005 ACM Programming Contest Practice Contest for World Finals



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem H
Move the Object

Input File: move.in

Mike and his friends are crazy for a video game. The aim of the game is to move a circular object placed on a
two-dimensional field to the destination point by an analog pad. On the field there are some polygonal obstacles
through which the object cannot move. When the object gets to the destination point, the player gains the score
depending on the distance it moved over, and then advances to the next stage. As you might realize, the shorter
move makes the higher score.

Though many obstacles appear in the latter stages, only one obstacle is set in each of first several stages, and
Mike is absorbed in moving the object by the shortest distance in those stages. In fact, he moves the object by
shorter distance than any his friends, but he is not sure that he really moves by the minimum distance. So he
calls you for the help.

Your task is to write a program that computes the minimum moving distance for given data.

Input
The input consists of a series of data sets.

The first line of each set contains an integerN (3 ≤ N ≤ 20) indicating the number of vertices of the polygonal
obstacle. The nextN lines specify coordinates of the vertices, which are given counterclockwise. Each line
consists of two real numbers that indicatesx andy-coordinates of a vertex respectively. Then a line containing
four numbersSX, SY, DX andDY follows, where (SX,SY) and (DX,DY) are coordinates of the starting and
destination points respectively.

Each coordinate value is an integer between−100 and 100 inclusive. The radius of the circular object is one. No
obstacle is degenerate. The position of the object is represented by the coordinate of its center. The starting
point and the destination point do not coincide.

The input is terminated byN = 0.

Output
For each data set, output a line containing the minimum distance needed to move the object from the starting
point to the destination point, with four decimal digits and an error not greater than 0.0001.

It is guaranteed that there is a way to move the object from the starting point to the destination point.



The 2005 ACM Programming Contest Practice Contest for World Finals

Sample Input
4
-5 -5
5 -5
5 5
-5 5
0 -10 0 10
8
10 20
-10 20
-20 10
-20 -10
-10 -20
10 -20
20 -10
20 10
-21 0 21 0
5
0 10
-5 5
-5 0
0 5
5 0
10 0 16 8
0

Output for the Sample Input
25.8546
71.4259
10.0000



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem I
Organization Chart

Input File: org.in

An organization chart depicts the structure of the organization. The figure below shows an example of an
organization chart.

F

B G

D J A C H

I E

As you see, an organization chart is considered as a kind of tree. Each edge represents the relationship of a boss
and a subordinate, and hence the depth of each node implies the person’s position in the organization. Relative
position of nodes is also often important; for example, when A and B come just under C, it is important which is
placed on the left.

One day, a president passed copies of the organization chart of his company to the two officers X and Y, and
ordered them to makesequencesfrom the chart in their own ways.

The officer X makes a sequence by tracing edges from right to left, that is, by reverse pre-order traversal. For
example, he makes the following sequence from the chart shown above: F, G, H, C, A, E, I, B, J, D.

The officer Y makes another sequence in the order of the levels of the persons. The level of a person is simply
measured by his/her depth from the top. As breadth first search, the person of the highest level comes first,
while the person of the lowest level comes last. Persons on the equivalent level are ordered from left to right.

The other day, the president has lost the organization chart and all its copies for some reason. But fortunately, he
found the sequences made by the officers X and Y, which is enough to reproduce the chart.

Now you are requested to write a program that restructures the organization chart from given two sequences.

Input
Input consists of some data sets. The first line of each set contains a positive integern (n ≤ 26) that represents
the number of persons in the organization. It is followed by two lines that denote the sequence by the officers X
and Y respectively, each containingn capital letters fromA to Z separated by space.

The end of input is indicated byn = 0, which should not be processed.

Output
For each set, you should output a line that describes the structure of the organization chart. You should output
“a(bcd) ” if the persona is a boss of the personsb, c andd appearing in this order from left to right in the
chart. See samples below for the precise format.



The 2005 ACM Programming Contest Practice Contest for World Finals

Sample Input
5
A B D C E
A B C D E
10
F G H C A E I B J D
F B G D J A C H I E
0

Output for the Sample Input
A(B(C(E)D))
F(B(DJ)G(A(IE)CH))



The 2005 29th Annual acm International Collegiate

Programming Contest Practice Contest
for World Finals

Problem J
Poke Poker Pokest

Input File: poker.in

This is a story of a fantasy world namedUpper Earth. The hero of the story is an explorer Flood, who goes
through caves, ruins, deserts, mountains and so on.

One day, he got to the city calledUpper Sea. At that time the Pork Festival was being held. As soon as he
joined the festival, he got to know the name of the best pork dish there —Pokest. It tasted so great that no one
could eat Pokest without being in heaven. So Flood wanted to eat, but no one knew how to make except that
pokingis the most important factor for that. Fortunately, he soon found that a poker contest would be held for
people who want to eat Pokest. Of course he immediately decided to participate the contest, but he was told that
only one person could eat; so he had to be a champion of the contest. You may wonder why only one champion
could eat. This was because the contest was held by the king ofUpper Sea, and he could not invite more than
one person for security reasons.

Well, there were many contestants in the contest, so the king decided to use a special deck instead of an ordinary
fifty-two-card deck. Each card in the deck had a suit and a rank as an ordinary card does, but there wereskinds
of suits andr ranks. A suit was represented by a capital letter of firstsalphabets (A,B,C,...), and a rank
represented by an integer between 1 andr.

A game went as follows. First the game players sat down around the table. After that, the king named a person
as the dealer of the game. The person named by the king first chose an arbitary player (including himself or
herself) as the first player of the game, then dealt the first five cards in the deck to the first player, the next five
cards to the next player (in clockwise order), and so forth. After dealing of cards, each player exchanged any
number of cards as he or she wanted, from the first player in clockwise order. Exchange was done by discarding
some cards from the hand and drawing the same number of cards from the top of the deck, like an ordinary draw
poker. A player could choose to exchange no cards or even all cards in his or her hand. After all player
exchanged cards, showdown was carried out, and the player who made the highest hand among the players won
the game and was to be invited by the king for a Pokest dish.

In the contest, there were ten kinds of hands shown below in decreasing order. Note thatr and 1 were not
regarded as consecutive ranks. In addition, no tie breaker is laid down for players of the same hand. If more
than one player made the highest hand, no one would be a winner nor could eat Pokest.

Name Description Example
Five of a Kind Five cards of the same rank. (A,1)(B,1)(C,1)(D,1)(E,1)
Straight Flush Five cards forming both a straight and a flush.(A,1)(A,2)(A,3)(A,4)(A,5)
Four of a Kind Four cards of the same rank. (A,1)(B,1)(C,1)(D,1)(E,2)
Full House Three cards of one rank and a pair of another.(A,1)(B,1)(C,1)(D,2)(E,2)
Flush Five cards of the same suit. (A,1)(A,2)(A,5)(A,6)(A,9)
Straight Five cards of consecutive ranks. (A,1)(B,2)(C,3)(A,4)(E,5)
Three of a Kind Three cards of the same rank. (A,1)(B,1)(C,1)(D,2)(E,5)
Two Pair Two seperate pairs. (A,1)(B,1)(C,2)(D,2)(E,5)
One Pair Two cards of the same rank. (A,1)(B,1)(C,2)(D,3)(E,5)
No Pair Cards not forming any hands mentioned above.(A,1)(B,2)(C,5)(D,7)(A,9)

Now Flood advanced to the final round, and fortunately he was named as a dealer of the final round. He got all
cards in the deck and could control the order of the cards by his special ability, but was there a way for him to
win...?

Your task is to write a program that determines if there was a winning strategy for a Pokest dish, no matter how
many cards the other players exchanged.



The 2005 ACM Programming Contest Practice Contest for World Finals

Input
Input consists of multiple test cases. The first line of each case contains three integersn (2 ≤ n ≤ 100),s
(1 ≤ s≤ 26) andr (1 ≤ r ≤ 100), wheren indicates the number of the players,s indicates the number of suits,
andr indicates the number of ranks. The following 10n lines contain cards in the deck from the top to the
bottom. Input is terminated by end of file.

You can assume thats×m≥ 10n.

Output
For each test case, you should print “Yes” in a line if it is possible to eat Pokest, otherwise print “No”.

Sample Input
3 5 10
A 1
B 1
C 1
D 1
E 1
A 2
B 2
C 2
D 2
E 10
A 3
B 3
C 3
D 3
E 9
A 4
B 4
C 4
D 4
E 8
A 5
B 5
C 5
D 5
E 7
A 6
B 6
C 6
D 6
A 10

Output for the Sample Input
Yes


