
Problem Set for the 3rd Day of Winter Camp

Japanese Alumni Group

Contest Held on 25 Feb 2007

Status of Problems

Problem Source
Problem A new problem
Problem B The 2005 ACM Central Europe Programming Contest
Problem C The 2005 ACM Asia Programming Contest, Hangzhou
Problem D new problem
Problem E The 2006 ACM South Pacific Programming Contest
Problem F The 2006 ACM Southeastern Europe Programming Contest
Problem G new problem
Problem H new problem
Problem I The 2005 ACM Asia Programming Contest, Dhaka
Problem J The 2006 ACM South Pacific Programming Contest

The problems listed with “new problem” in the Source column were newly created by the members of
Japanese Alumni Group.

The other problems were taken from past programming contests as indicated above. Most of them were
modified by the members of Japanese Alumni Group for clarification of the statement, adjustment of
difficulty level, change of data input style, attempt to hide the source of each problem from the partici-
pants during the contest proper, and/or other purposes. The sources of all problems were revealed to the
participants after the contest ended.

Terms of Use

You may use ournewproblems in any form, entirely or in part, with or without modification, for any
purposes, without prior or posterior consent to Japanese Alumni Group, provided that your use is made
solely at your own risk.

For the other problems, the original author(s) may or may not restrict your use. You must therefore be
responsible for confirming your use is allowed by the original author(s). Japanese Alumni Group shall
not impose extra restrictions on your use of our modified versions.

THE PROBLEM SET IS PROVIDED “AS-IS”, WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTY. IN NO EVENT SHALL JAPANESE ALUMNI GROUP, THE MEMBERS OF THE GROUP,
OR THE CONTRIBUTORS TO THE GROUP BE LIABLE FOR ANY DAMAGE ARISING IN ANY
WAY OUT OF THE USE OF THE PROBLEM SET, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem A
Dock to the Future

Input File: dock.in

You had long wanted a spaceship, and finally you bought a used one yesterday! You have heard that the most
difficult thing on spaceship driving is to stop your ship at the right position in the dock. Of course you are no
exception. After a dozen of failures, you gave up doing all the docking process manually. You began to write a
simple program that helps you to stop a spaceship.

First, you somehow put the spaceship on the straight course to the dock manually. Let the distance to the limit
line bex [m], and the speed against the dock bev [m/s]. Now you turn on the decelerating rocket. Then, your
program will control the rocket to stop the spaceship at the best position.

Your spaceship is equipped with a decelerating rocket withn modes. When the spaceship is in mode-i (0 ≤ i < n),
the deceleration rate isai [m/s2]. You cannot re-accelerate the spaceship. The accelerating rocket is too powerful
to be used during docking. Also, you cannot turn off-and-on the decelerating rocket, because your spaceship is a
used and old one, once you stopped the rocket, it is less certain whether you can turn it on again. In other words,
the time you turn off the rocket is the time you stop your spaceship at the right position.

After turning on the deceleration rocket, your program can change the mode or stop the rocket at every sec-
ond, starting at the very moment the deceleration began. Givenx andv, your program have to make a plan of
deceleration. The purpose and the priority of your program is as follows:

1. Stop the spaceship exactly at the limit line. If this is possible, print “perfect ”.
2. If it is impossible, then stop the spaceship at the position nearest possible to the limit line, butbeforethe

line. In this case, print “good d”, whered is the distance between the limit line and the stopped position.
Print three digits after the decimal point.

3. If it is impossible again, decelerate the spaceship to have negative speed, and print “try again ”.
4. If all of these three cases are impossible, then the spaceship cannot avoid overrunning the limit line. In this

case, print “crash ”.

Input
The first line of the input consists of a single integerc, the number of test cases.

Each test case begins with a single integern (1 ≤ n ≤ 10), the number of deceleration modes. The following line
containsn positive integersa0, . . . , an−1 (1 ≤ ai ≤ 100), each denoting the deceleration rate of each mode.

The next line contains a single integerq (1 ≤ q ≤ 20), and thenq lines follow. Each of them contains two positive
integersx andv (1 ≤ x, v ≤ 100) defined in the problem statement.

Output
For each pair ofx andv, print the result in one line. A blank line should be inserted between the test cases.

Sample Input
1
3
2 4 6
4
10 100
2 3
10 6
7 6

Output for the Sample Input
crash
try again
good 1.000
perfect

Practice Contest for World Finals 2007: Full Contest

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem B
Widget Factory
Input File: factory.in

The widget factory produces several different kinds of widgets. Each widget is carefully built by a skilled
widgeteer. The time required to build a widget depends on its type: the simple widgets need only 3 days, but the
most complex ones may need as many as 9 days.

The factory is currently in a state of complete chaos: recently, the factory has been bought by a new owner, and
the new director has fired almost everyone. The new staff know almost nothing about building widgets, and it
seems that no one remembers how many days are required to build each different type of widget. This is very
embarrassing when a client orders widgets and the factory cannot tell the client how many days are needed to
produce the required goods. Fortunately, there are records that say for each widgeteer the date when he started
working at the factory, the date when he was fired and what types of widgets he built. The problem is that the
record does not say the exact date of starting and leaving the job, only the day of the week. Nevertheless, even
this information might be helpful in certain cases: for example, if a widgeteer started working on a Tuesday,
build a Type 41 widget, and was fired on a Friday, then we know that it takes 4 days to build a Type 41 widget.
Your task is to figure out from those records (if possible) the number of days that are required to build the differnt
types of widgets.

Input
The input contains several blocks of test cases. Each case begins with a line containing two integers: the number
n (1 ≤ n ≤ 100) of the different types, and the numberm (1 ≤ m ≤ 100) of the records. This line is followed by
a description of them records. Each record is described by two lines. The first line contains the total numberk
(1 ≤ k ≤ 400) of widgets built by this widgeteer, followed by the day of week when he/she started working and
the day of the week he/she was fired. The days of the week are given by the strings ‘MON’, ‘ TUE’, ‘ WED’, ‘ THU’,
‘FRI ’, ‘ SAT’ and ‘SUN’. The second line containsk integers separated by spaces. These numbers are between 1
andn, and they describe the different types of widgets that the widgeteer built. For example, the following two
lines mean that the widgeteer started working on a Wednesday, built a Type 13 widget, a Type 18 widget, a Type
1 widget, again a Type 13 widget, and was fired on a Sunday.

4 WED SUN
13 18 1 13

Note that the widgeteers work 7 days a week, and they were working on every day between their first and last
day at the factory (if you like weekends and holidays, then do not become a widgeteer!).

The input is terminated by a test case withn = m= 0.

Output
For each test case, you have to output a single line containingn integers separated by spaces: the number of days
required to build the different types of widgets. There should be no space before the first number or after the last
number, and there should be exactly one space between two numbers. If there is more than one possible solution
for the problem, then write ‘Multiple solutions. ’ (without the quotes). If you are sure that there is no
solution consistent with the input, then write ‘Inconsistent data. ’ (without the quotes).

Practice Contest for World Finals 2007: Full Contest

Sample Input
2 3
2 MON THU
1 2
3 MON FRI
1 1 2
3 MON SUN
1 2 2
10 2
1 MON TUE
3
1 MON WED
3
0 0

Output for the Sample Input
8 3
Inconsistent data.

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem C
Hills

Input File: hills.in

Little Billy likes drawing with chalks of all colors. As a child of his age, all he can do is to draw straight lines.
Today he has been told that hills are of the shape of triangles, and he brought out a lot of his works and tried
to identify as many hills as he could. Being one of his best friends, you gladly joined his effort. However after
working for a while you are desperate to find the huge number of sketches he has produced. You suggested this
alternative plan — to code up a program for him.

Figure 1: The Figure Only Containing One Hill
.

Keep in mind that in Billy’s pictures all the lines are connected, no line will have an end point right on another
line, and there is no single point where more than two lines intersect. We would only count the hills that are not
cut by other lines.

Input
The first line of the input is a single integerT which is the number of test cases.T test cases follow, each preceded
by a single blank line.

Each test case starts with an integerN (1 < N ≤ 500), which is the number of lines on the picture. The nextN
lines contain a line segment’s two end points. The coordinates are all integers (−10,000< x, y < 10, 000).

Output
For each case, print the number of hills on a single line.

Practice Contest for World Finals 2007: Full Contest

Sample Input
3

3
-1 0 3 0
0 -1 0 3
-1 3 3 -1

4
-3 0 3 6
3 0 -3 6
5 3 0 9
1 0 1 9

6
-30 -20 30 -20
-20 -30 -20 30
-30 20 30 20
20 -30 20 30
-30 -10 10 30
-11 11 -9 9

Output for the Sample Input
1
2
0

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem D
Flame of Nucleus
Input File: nucleus.in

Year 20XX — a nuclear explosion has burned the world. Half the people on the planet have died. Fearful.

One city, fortunately, was not directly damaged by the explosion. This city consists ofN domes (numbered 1
throughN inclusive) andM bidirectional transportation pipelines connecting the domes. In domei, Pi citizens
reside currently and there is a nuclear shelter capable of protectingKi citizens. Also, it takesDi days to travel
from one end to the other end of pipelinei.

It has been turned out that this city will be polluted by nuclear radiation inL days after today. So each citizen
should take refuge in some shelter, possibly traveling through the pipelines. Citizens will be dead if they reach
their shelters in exactly or more thanL days.

How many citizens can survive at most in this situation?

Input
The input consists of multiple test cases. Each test case begins with a line consisting of three integersN, M
andL (1 ≤ N ≤ 100, M ≥ 0, 1 ≤ L ≤ 10000). This is followed byM lines describing the configuration of
transportation pipelines connecting the domes. Thei-th line contains three integersAi , Bi andDi (1 ≤ Ai < Bi ≤
N, 1 ≤ Di ≤ 10000), denoting that thei-th pipeline connects domeAi and Bi . There is at most one pipeline
between any pair of domes. Finally, there come two lines, each consisting ofN integers. The first givesP1, . . .,
PN (0 ≤ Pi ≤ 106) and the second givesK1, . . ., KN (0 ≤ Ki ≤ 106).

The input is terminated by EOF. All integers in each line are separated by a whitespace.

Output
For each test case, print in a line the maximum number of people who can survive.

Sample Input
1 0 1
51
50
2 1 1
1 2 1
1000 0
0 1000
4 3 5
1 2 4
1 3 1
3 4 2
0 1000 1000 1000
3000 0 0 0

Output for the Sample Input
50
0
3000

Practice Contest for World Finals 2007: Full Contest

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem E
Safe Packing
Input File: pack.in

The manager of a packing warehouse, which specialises in packing breakable items, contracted a supplier for
boxes of sizes from the Fibonacci sequence. I am not sure of the reason behind it, but it is rumoured to be related
to the recent “Da Vinci code” movie. An item whose size is in the sequence can be packed in a box of the equal
size without filling, but an item whose size is not in the sequence must be packed with sufficient filling material
to fill the box and protect the item from breaking. An item cannot be split between two boxes, and each item
must be packed separately in its own box. It is allowed to use multiple boxes of the same size.

The second twist in this story, which makes it more bizarre, is that the company only receives a daily filling
material delivery of sizeF to be used. At the end of each day, any unused filling material is discarded. Unlike
the items, the filling material can be split as needed.

Your task is to maximize the number of items shipped each day for a given size of filling materialF and a given
list of items.

The Fibonacci sequence fib(n) is defined as:

fib(n) =

n for n < 2
fib(n− 1)+ fib(n− 2) for n ≥ 2

Here are the first eleven numbers of Fibonacci sequence:

0, 1,1,2,3,5,8,13,21,34,55, . . .

Note that each number, with the exception of the first two, is obtained by adding the preceding two numbers.

Input
The input to this problem consists of packing tasks for one or more days. The tasks for each day are described
by two lines as follows:

• The first line consists of three integers: the number of items to be packed,W (0 <W < 1000); the available
size of filling material,F (1 < F < 1000); and the maximum size of items,S (1 < S < 108). The integers
are separated by spaces.
• The following line containsW integers separated by spaces that describe the sizes of items to be packed.

The input will be terminated by a line that consists of three zeros, separated by spaces. This line should not be
processed.

Output
For each day, the output consists of one line that contains the number of items that can be packed for that day.

Sample Input
4 10 30
7 15 30 5
11 100 5812167
20 40 30 15 17 5812167 23 43 33 13 37
0 0 0

Output for the Sample Input
3
10

Practice Contest for World Finals 2007: Full Contest

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem F
The “Shortest” Pair of Paths

Input File: path.in

A chemical company has an unusual shortest path problem. There areN depots (vertices) where chemicals can
be stored. There areM individual shipping methods (edges) connecting pairs of depots. Each individual shipping
method has a cost. In the usual problem, the company would need to find a way to route a single shipment from
the first depot (0) to the last (N − 1). That’s easy. The problem they have seems harder. They have to ship two
chemicals from the first depot (0) to the last (N − 1). The chemicals are dangerous and cannot safely be carried
together. Because of that, the company cannot use the same shipping method for both chemicals. To begin with,
they need to know if it’s possible to ship both chemicals under these constraints. Next, they need to find the least
cost of shipping both chemicals from the first depot to the last depot. In brief, they need two separate paths where
the overall cost of the paths is minimum. The same intermediate depot may be contained in both of the paths.

Your program must simply determine the minimum cost or, if it’s impossible, conclusively state that the shipment
cannot be made.

Input
The input consists of multiple cases. The first line of each input containsN andM whereN is the number of
depots andM is the number of individual shipping methods. You may assume thatN is less than 64 and thatM
is less than 10000. The nextM lines contain three values,i, j, andv. Each line corresponds to a single, unique
shipping method. The valuesi and j are the indices of two depots, andv is the cost of shipping a chemical from
i to j. Note that these shipping methods are directed. Even if something can be shipped fromi to j with cost 10,
that says nothing about shipment fromj to i. Also, there may be more than one shipping method between any
pair of depots, and that may be important here.

A line containing two zeros signals the end of data and should not be processed.

All the numbers in the input are integers.

Output
For each case, write one line containing the case number followed by the minimum cost. If the shipment is
impossible, write “Not possible ” instead of the cost. Follow the output format shown below.

Sample Input
2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0

Output for the Sample Input
Instance #1: Not possible
Instance #2: 40
Instance #3: 73

Practice Contest for World Finals 2007: Full Contest

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem G
Resource

Input File: resource.in

Dr. Keith Miller is a researcher who studies the history of Island of Constitutional People’s Country (ICPC).
Many studies by him and his colleagues have revealed various facts about ICPC. Although it is a single large
island today, it was divided in several smaller islands in some ancient period, and each island was ruled by a
king. In addition to the islands, there were severalresource regionson the sea, and people living in the islands
used energy resource obtained in those regions.

Recently Dr. Miller discovered some ancient documents that described the agreements made among the kings.
Some of them focused on resource regions, and can be summarized as follows: each island was allowed to mine
resource only in its exclusive resource zone (ERZ). The ERZ of each island was defined as a sea area within an
agreed distanced from the boundary of the island. In case areas occur where more than one ERZ overwrapped,
such areas were divided by equidistant curves, and each divided area belonged to the ERZ of the nearest island.

Now Dr. Miller wants to know how much resource allocated to each island, which will help him to grasp the
power balance among the islands. For that purpose, he called you as a talented programmer. Your task is to write
a program that makes rough estimation about the amount of resource available for each island. For simplicity,
the world map is represented on a two-dimensional plane, where each of the islands and the resource regions
is represented as a convex polygon. Because of the difference in the resource deposit among the regions, the
amount of resource per unit area is also given for each region. In this settings, the amount of resource available
in a (partial) area of a region is given by〈the amount per unit area〉×〈the area size〉. The total amount of resource
for each island is given by the sum of the amount of resource available in all (partial) areas of the regions included
in the ERZ.

Input
The input consists of no more than five test cases.

The first line of each test case contains two integersM andN (1 ≤ M,N ≤ 5) that indicate the numbers of islands
and resource regions, respectively. The next line contains a single real numberd (0 < d ≤ 10) that represents the
agreed distance for the ERZs. After thatM lines appear to describe the islands: thei-th line specifies the shape
of the i-th island as stated below. ThenN lines appear to describe the resource regions: thej-th line contains
a single real numbera j (0 < a j ≤ 1), the amount of resource per unit area in thej-th region, followed by the
specification for the shape of thej-th region.

Each of the (polygonal) shapes is specified by a single integern (3 ≤ n ≤ 6), the number of vertices in the
shape, followed byn pairs of integers where thek-th pairxk andyk gives the coordinates of thek-th vertex. Each
coordinate value ranges from 0 to 50 inclusive. The vertices are given in the counterclockwise order. No shape
has vertices other than the endpoints of edges. No pair of shapes overwrap.

Each real number in the input is given with up to two fractional digits.

The input is terminated by a line that contains two zeros.

Output
For each test case, printM lines where thei-th line represents the total amount of resource for thei-th island.
Each amount should be printed with one fractional digit, and should not contain an error greater than 0.1.

Print an empty line between two consecutive cases.

Practice Contest for World Finals 2007: Full Contest

Sample Input
2 3
10.00
3 10 10 20 10 10 20
4 30 10 40 10 40 20 30 20
1.00 3 0 0 10 0 0 10
0.50 4 20 15 25 15 25 20 20 20
0.75 6 40 35 50 40 40 50 30 50 25 45 30 40
4 1
5.00
3 0 0 24 0 0 24
3 50 0 50 24 26 0
3 0 50 0 26 24 50
3 50 50 26 50 50 26
1.00 4 25 0 50 25 25 50 0 25
0 0

Output for the Sample Input
35.4
5.6

133.3
133.3
133.3
133.3

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem H
Exact Arithmetic

Input File: sqrt.in

Let X be a set of all rational numbers and all numbers of formq
√

r, whereq is a non-zero rational number andr
is an integer greater than 1. Herer must not have a quadratic number except for 1 as its divisor. Also, letX∗ be a
set of all numbers which can be expressed as a sum of one or more elements inX.

A machine Y is a stack-based calculator which operates on the values inX∗ and has the instructions shown in the
table below.

push n Pushes an integer specified in the operand onto the stack.
add Pops two valuesx1 andx2 from the top of the stack in this order, then pushes (x2+x1).
sub Pops two valuesx1 andx2 from the top of the stack in this order, then pushes (x2−x1).
mul Pops two valuesx1 andx2 from the top of the stack in this order, then pushes (x2×x1).
div Pops two valuesx1 andx2 from the top of the stack in this order, then pushes (x2÷x1).

x1 must be a non-zero value inX (not X∗).
sqrt Pops one valuex from the stack and pushes the square root ofx. x must be a non-

negative rational number.
disp Pops one valuex from the stack, and outputs the string representation of the valuex

to the display. The representation rules are stated later.
stop Terminates calculation. The stack must be empty when this instruction is called.

Table 1: Instruction Set for the Machine Y

A sufficient number of values must exist in the stack on execution of every instruction. In addition, due to the
limitation of the machine Y, no more values can be pushed when the stack already stores as many as 256 values.
Also, there exist several restrictions on values to be pushed onto the stack:

• For rational numbers, neither numerator nor denominator in the irreducible form may exceed 32,768 in its
absolute value.
• For any element inX of the formq

√
r = (a/b)

√
r, |a
√

r | ≤ 32,768 and|b| ≤ 32,768.
• For any element inX∗, each term in the sum must satisfy the above conditions.

The rules for the string representations of the values (on the machine Y) are as follows:

• A rational number is represented as either an integer or an irreducible fraction with a denominator greater
than 1. A fraction is represented as “〈numerator〉/ 〈denominator〉”. A sign symbol- precedes in case of a
negative number.
• A number of the formq

√
r is represented as “〈string representation ofq〉*sqrt(r) ” except for the case

with q = ±1, in which the number is represented as “sqrt(r) ” (q = 1) or “-sqrt(r) ” (q = −1).
• For the sum of two or more elements ofX, string representations of all the (non-zero) elements are con-

nected using the binary operator+. In this case, all terms with the same rooted number are merged into a
single term, and the terms must be shown in the ascending order of its root component. For the purpose of
this rule, all rational numbers are regarded to accompany

√
1.

• There is exactly one space character before and after each of the binary operator+. No space character
appears at any other place.

The followings are a few examples of valid string representations:

0
1
-1/10
2*sqrt(2) + 1/2*sqrt(3) + -1/2*sqrt(5)
1/2 + sqrt(10) + -sqrt(30)

Practice Contest for World Finals 2007: Full Contest

Your task is to write a program that simulates the machine Y.

Input
The input is a sequence of instructions. Each line contains a single instruction. You may assume that every
instruction is called in a legal way. The instructionstop appears only once, at the end of the entire input.

Output
Output the strings which the machine Y will display. Write each string in a line.

Sample Input
push 1
push 2
sqrt
div
push 1
push 3
sqrt
div
add
disp
push 8
sqrt
push 3
push 2
sqrt
mul
add
disp
stop

Output for the Sample Input
1/2*sqrt(2) + 1/3*sqrt(3)
5*sqrt(2)

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem I
Counting Triangles

Input File: triangle.in

Triangles are polygons with three sides and strictly positive area. Lattice triangles are the triangles all whose
vertices have integer coordinates. In this problem you have to find the number of lattice triangles in anM × N
grid. For example in a 1× 2 grid there are 18 different lattice triangles as shown in the picture below:

Figure 2: Lattice Triangles in a 1× 2 Grid
.

Input
The input file contains at most 21 sets of inputs.

Each set of input consists of a line that contains two integersM andN (0 < M,N ≤ 1000). These two integers
denote that you have to count triangles in anM × N grid.

The input is terminated by a case where the value ofM andN are zero. This case should not be processed.

Output
For each set of input produce one line of output. This output contains the case number of output followed by the
number of lattice triangles in the grid. You can assume that the number of triangles will fit in a 64-bit signed
integer.

Sample Input
1 1
1 2
0 0

Output for the Sample Input
Case 1: 4
Case 2: 18

Practice Contest for World Finals 2007: Full Contest

Practice Contest for ACM-ICPC World Finals 2007
presented by JAG

Full Contest

Problem J
Wireing Assistant

Input File: wire.in

A printed circuit board has a number of horizontal and vertical tracks that may be used to connect electronic
components. The example below demonstrates a square board with ten vertical tracks that we shall assign labels
from 0 to 9 starting from the left end, ten horizontal tracks that we shall assign labels from 0 to 9 starting from
the bottom end, and eight laid-down wires (shown in black). Each wire occupies a single horizontal or a single
vertical track, and is described by its lower left coordinate followed by its upper right coordinate. In the example
below, the eight wires are described by:

0 0 1 0 4 0 4 6 0 5 5 5 8 2 8 6 6 4 6 7 7 6 7 8 2 6 5 6 7 8 9 8

Figure 3: An Example Situation

A horizontal wire may overlap with a vertical wire in a single grid point.

A horizontal wire may not overlap with another horizontal wire, except at their endpoints. Similarly a vertical
wire may not overlap with another vertical wire, except at their endpoints. Your task is to write a program to
identify a path on a printed circuit board to connect two given points on the grid, which adheres to the above
rules, such that the number of points your path has in common with the existing wires is minimised. The four
dark gray wires, in the above example, connect the points (6,8) and (5,1) with minimum number of one overlap.
The light gray wires connect the same two points with two overlaps.

In some cases a path may not exist, but your program will only be used to connect a pair of points in printed
circuit boards where such a path is known to exist. Those cases will be identified and removed by a sophisticated
imaging system, but that is another story.

Input
Input to this problem consists of a sequence of one or more design situations. Several lines describe each design
situation as follows:

• The first line consists of two integers: the number of existing wires,M (0 < M < 100); the number of
horizontal tracks (and also the number of vertical tracks) on a square printed circuit boardS (0 < S < 109).
The integers are separated by spaces.
• The second line consists of 4×M integers (i.e.M pairs of 2-dimensional coordinates), separated by spaces,

that describe the exact positions of the existing wires in the design.

Practice Contest for World Finals 2007: Full Contest

• The third line consists of four integers (i.e. a pair of 2-dimensional coordinates), separated by spaces, that
describe the exact positions of the two points to be connected.

The input will be terminated by a line that consists of two zeros. This line should not be processed.

Output
For each design situation, the output is a single line that contains the minimum number of overlaps.

Sample Input
8 10
0 0 1 0 4 0 4 6 0 5 5 5 8 2 8 6 6 4 6 7 7 6 7 8 2 6 5 6 7 8 9 8
6 8 5 1
7 10
0 0 1 0 4 0 4 6 0 5 5 5 8 2 8 6 6 4 6 7 2 6 5 6 6 4 8 4
6 8 5 1
0 0

Output for the Sample Input
1
0

